Mindis

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2787    Accepted Submission(s): 555
Special Judge

Problem Description
The center coordinate of the circle C is O, the coordinate of O is (0,0) , and the radius is r.
P and Q are two points not outside the circle, and PO = QO.
You need to find a point D on the circle, which makes PD+QD minimum.
Output minimum distance sum.
 
Input
The first line of the input gives the number of test cases T; T test cases follow.
Each case begins with one line with r : the radius of the circle C.
Next two line each line contains two integers x , y denotes the coordinate of P and Q.

Limits
T≤500000
−100≤x,y≤100
1≤r≤100

 
Output
For each case output one line denotes the answer.
The answer will be checked correct if its absolute or relative error doesn't exceed 10−6.
Formally, let your answer be a, and the jury's answer be b. Your answer is considered correct if |a−b|max(1,b)≤10−6.
 
Sample Input
4
4
4 0
0 4
4
0 3
3 0
4
0 2
2 0
4
0 1
1 0
 
Sample Output
5.6568543
5.6568543
5.8945030
6.7359174
 
Source
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  6119 6118 6117 6116 6115 
 
以下转自:http://blog.csdn.net/kkkkahlua/article/details/77074409

题意:

圆心 O 坐标(0, 0), 给定两点 P, Q(不在圆外),满足 PO = QO,

要在圆上找一点 D,使得 PD + QD 取到最小值。

官方题解:

做P点关于圆的反演点P',OPD与ODP'相似,相似比是|OP| : r。

Q点同理。

极小化PD+QD可以转化为极小化P'D+Q'D。

当P'Q'与圆有交点时,答案为两点距离,否则最优值在中垂线上取到。

时间复杂度 O(1)O(1)

补充说明:

反演:

设在平面内给定一点O和常数k(k不等于零),对于平面内任意一点A,确定A′,使A′在直线OA上一点,并且有向线段OA与OA′满足OA·OA′=k,我们称这种变换是以O为的反演中心,以k为反演幂的反演变换,简称反演。——百度百科

在这里,k 即为圆半径 r ^ 2,因此,相似就是显然的了。

当 P'Q' 与圆有交点时:

不妨设交点为 O',若 D 不为 O',则 P'D + Q'D >  P'Q'(三角形两边之和大于第三边);当且仅当 D 取 O' 时,P'Q + Q'D 取到最小值,即为 P'Q'。

当 P'Q' 与圆无交点时:

不妨将 P' 与 Q' 看成椭圆的两个焦点,当椭圆慢慢变大时,第一个碰到的圆上的点 D 即为使得 P'D + Q'D 最小的点;画个图就很显然了,第一个碰到的点即为 PQ 的中垂线与圆的交点。

至于判断有 P'Q' 与圆有没有交点,就是圆心到直线的距离与半径比较,又因为此处 P'O=Q'O,所以只需要比较 P'Q' 的中点到圆心的距离和半径的大小。

注意点:

1. 注意 PO = QO = 0 的情况

2. 尽量用比例而不是角度进行计算

 
这题精度很是问题
#include <iostream>
#include<bits/stdc++.h>
using namespace std; const double eps=1e-;
int t;
double R,px,py,qx,qy;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%lf%lf%lf%lf%lf",&R,&px,&py,&qx,&qy);
if (px== && py==) {printf("%.7lf\n",*R);continue;}
double r=sqrt(pow(px,)+pow(py,));
double k=R*R/(r*r); //不是相似比
double ppx=px*k,ppy=py*k,qqx=qx*k,qqy=qy*k;
//printf("%.2lf %.2lf\n",ppx,ppy);
double midx=(ppx+qqx)/,midy=(ppy+qqy)/;
double dis=sqrt(pow(midx,)+pow(midy,) );
//printf("%.7lf\n",dis);
if (dis<=R)
{
// double op2=sqrt(pow(ppx,2)+pow(ppy,2));
printf("%.7lf\n",sqrt(pow(ppx-qqx,)+pow(ppy-qqy,))*r/R); } else
{
double mx=midx/dis*R; double my=midy/dis*R;
printf("%.7lf\n",*sqrt(pow(mx-px,)+pow(my-py,)) );
}
}
return ;
}

hdu 6097 Mindis(数学几何,圆心的反演点)的更多相关文章

  1. 2017多校第6场 HDU 6097 Mindis 计算几何,圆的反演

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6097 题意:有一个圆心在原点的圆,给定圆的半径,给定P.Q两点坐标(PO=QO,P.Q不在圆外),取圆 ...

  2. 2017ACM暑期多校联合训练 - Team 6 1002 HDU 6097 Mindis (数学)

    题目链接 Problem Description The center coordinate of the circle C is O, the coordinate of O is (0,0) , ...

  3. HDU 6097 Mindis (计算几何)

    题意:给一个圆C和圆心O,P.Q是圆上或圆内到圆心距离相等的两个点,在圆上取一点D,求|PD| + |QD|的最小值 析:首先这个题是可以用三分过的,不过也太,.... 官方题解: 很不幸不总是中垂线 ...

  4. hdu 1577 WisKey的眼神 (数学几何)

    WisKey的眼神 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. hdu 1115 Lifting the Stone (数学几何)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. hdu 5605 geometry(几何,数学)

    Problem Description There is a point P at coordinate (x,y). A line goes through the point, and inter ...

  7. HDU 5673 Robot 数学

    Robot 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5673 Description There is a robot on the origi ...

  8. 2019 年百度之星·程序设计大赛 - 初赛一 C. HDU 6670 Mindis 离散化+dijkstra

    题目链接 :http://acm.hdu.edu.cn/showproblem.php?pid=6670 Mindis Time Limit: 4000/2000 MS (Java/Others) M ...

  9. ACM: FZU 2110 Star - 数学几何 - 水题

     FZU 2110  Star Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u  Pr ...

随机推荐

  1. 洛谷 P4211 [LNOI2014]LCA (树链剖分+离线)

    题目:https://www.luogu.org/problemnew/solution/P4211 相当难的一道题,其思想难以用言语表达透彻. 对于每个查询,区间[L,R]中的每个点与z的lca肯定 ...

  2. Eclipse 导入Maven 项目报错

    新建Maven项目时出错:org.apache.maven.archiver.MavenArchiver.getManifest   新建Maven项目时出错:org.apache.maven.arc ...

  3. shell脚本批量启动zookeeper

    脚本名称为zk_run.sh 将下面代码粘贴进zk_run.sh 添加执行权限 chmode +x zk_run.sh 运行脚本 ./zk_run.sh start 如果发现zookeeper没有启动 ...

  4. Oracle中的substr()函数详解案例

    1)substr函数格式   (俗称:字符截取函数) 格式1: substr(string string, int a, int b); 格式2:substr(string string, int a ...

  5. python中统计计数的几种方法

    以下实例展示了 count() 方法的使用方法: 1 2 3 4 5 6 # !/usr/bin/python3   T = (123, 'Google', 'Runoob', 'Taobao', 1 ...

  6. Oracle中用触发器实现自动记录表数据被修改的历史信息

    oracle中用触发器实现自动记录表数据被修改的历史信息. 有一些比较重要的表字段每次修改需要做历史记录,以后可以查询这个表中某些字段如何被修改过.由什么改成了什么等,由谁操作,操作时间等. 实例:1 ...

  7. Python3.x:代理ip刷评分

    Python3.x:代理ip刷评分 声明:仅供为学习材料,不允许用作商业用途: 一,功能: 针对某网站对企业自动刷评分: 网站:https://best.zhaopin.com/ 二,步骤: 1,获取 ...

  8. Apache-solr

    1.1. 下载 从Solr官方网站(http://lucene.apache.org/solr/ )下载Solr4.10.3,根据Solr的运行环境,Linux下需要下载lucene-4.10.3.t ...

  9. 重新想,重新看——CSS3变形,过渡与动画①

    学习CSS3,觉得最难记忆的部分除了flex特性之外,就要属变形,过渡和动画部分了.作为初学者,总有种犯懒的心理,想着既然IE8浏览器都不完全支持CSS动画属性,还要考虑浏览器兼容问题,那么就不那么着 ...

  10. Mybatis 通过动态SQL获取序列值

      配置文件 <select id="getSeq" parameterType="string" resultType="long" ...