UVA - 1218 Perfect Service(树形dp)
题目链接: id=36043">UVA - 1218 Perfect Service
题意
有n台电脑。互相以无根树的方式连接,现要将当中一部分电脑作为server,且要求每台电脑必须连接且仅仅能连接一台server(不包含作为server的电脑)。求最少须要多少台电脑作为server。
思路
典型的树形dp问题,那么我们来建立模型。
d(u,0):u是server,孩子是不是server均可
d(u,1):u不是server,u的父亲是server,u的孩子不能是server
d(u,2):u不是server且u的父亲不是server,u的孩子必须有且仅有一个是server。那么显然的
d(u,0) = 1 + Sum( Min(d(v,1), d(v,0)) ) |v是u的孩子
d(u,1) = Sum(d(v,2))
d(u,2)稍复杂些。由于仅仅能有一个孩子是server,所以须要遍历每一个孩子为server的情况,每一轮遍历都要同一时候计算其它全部孩子,须要O(N^2)的时间。
显然这样会有非常多反复计算的情况,当然能够记忆化来加高速度,可是另一个更快的小技巧。由于d(u,1)和d(u,2)的唯一差别就是d(u,2)的孩子有一个server
那么我们能够得出
d(u,2) = Min(d(u,1)-d(v,2)+d(v,0)) |v是u的孩子
仍是遍历设每一个孩子为server。每一轮的操作为O(1),整体为O(N)
代码
ps:由于d(u,2)初始要设为无穷大,就设了0x3f3f3f3f,结果改成N就好了,找了好久才找出问题出在这,由于这个wrong了好多遍,但还是不知道为什么会wrong,知道原因的道友请不吝指点。
第一遍a的代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <cmath>
#include <map>
using namespace std;
const int N = 10009;
vector<int> g[N];
int dp[N][3];
void dfs(int u, int fa)
{
for(int i=0; i<g[u].size(); i++)
{
if(g[u][i] != fa)
dfs(g[u][i], u);
}
dp[u][0] = 1;
dp[u][1] = 0;
dp[u][2] = N;
for(int i=0; i<g[u].size(); i++)
{
if(g[u][i] != fa)
{
dp[u][0] += min(dp[g[u][i]][0], dp[g[u][i]][1]);
dp[u][1] += dp[g[u][i]][2];
}
}
bool f = true;
for(int i=0; i<g[u].size(); i++)
{
if(g[u][i] != fa)
{
f = false;
dp[u][2] = min(dp[u][2], dp[u][1]+dp[g[u][i]][0]-dp[g[u][i]][2]);
}
}
}
int main()
{
int n;
while(cin>>n)
{
memset(dp, -1, sizeof(dp));
int a, b;
for(int i=1; i<n; i++)
{
cin>>a>>b;
g[a].push_back(b);
g[b].push_back(a);
}
dfs(1, -1);
cout<<min(dp[1][0], dp[1][2])<<endl;
cin>>a;
if(a == -1)
break;
for(int i=1; i<=n; i++)
g[i].clear();
}
return 0;
}
观摩大神代码后进行改动的精简版
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <vector>
#include <cmath>
#include <map>
using namespace std;
const int N = 10009;
vector<int> g[N];
int dp[N][3];
void dfs(int u, int fa)
{
dp[u][0] = 1;
dp[u][1] = 0;
dp[u][2] = N;
for(int i=0; i<g[u].size(); i++)
{
if(g[u][i] != fa)
{
dfs(g[u][i], u);
dp[u][0] += min(dp[g[u][i]][0], dp[g[u][i]][1]);
dp[u][1] += dp[g[u][i]][2];
}
}
for(int i=0; i<g[u].size(); i++)
{
if(g[u][i] != fa)
dp[u][2] = min(dp[u][2], dp[u][1]+dp[g[u][i]][0]-dp[g[u][i]][2]);
}
}
int main()
{
int n;
while(cin>>n)
{
int a, b;
for(int i=1; i<n; i++)
{
cin>>a>>b;
g[a].push_back(b);
g[b].push_back(a);
}
dfs(1, -1);
cout<<min(dp[1][0], dp[1][2])<<endl;
cin>>a;
if(a == -1)
break;
for(int i=1; i<=n; i++)
g[i].clear();
}
return 0;
}
UVA - 1218 Perfect Service(树形dp)的更多相关文章
- UVA - 1218 Perfect Service (树形dp)(inf相加溢出)
题目链接 题意:给你一个树形图,让你把其中若干个结点染成黑色,其余的染成白色,使得任意一个白色结点都恰好与一个黑色结点相邻. 解法比较容易,和树上的最大独立集类似,取一个结点作为树根,对每个结点分三种 ...
- UVa 1218 - Perfect Service
/*---UVa 1218 - Perfect Service ---首先对状态进行划分: ---dp[u][0]:u是服务器,则u的子节点可以是也可以不是服务器 ---dp[u][1]:u不是服务器 ...
- UVA - 1218 Perfect Service (树形DP)
思路:dp[i][0]表示i是服务器:dp[i][1]表示i不是服务器,但它的父节点是服务器:dp[i][2]表示i和他的父亲都不是服务器. 转移方程: d[u][0] += min(d[ ...
- UVa 1218 - Perfect Service(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 1218 Perfect Service 完美的服务
***状态设计值得一看dp[u][0]表示u是服务器(以下v均指任意u的子结点,son指u的所有子结点)ap[u][0]=sum{dp[v][1]}+1//错误,服务器是可以和其他服务器相邻的dp[u ...
- POJ3398Perfect Service[树形DP 树的最大独立集变形]
Perfect Service Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 1518 Accepted: 733 De ...
- UVa 10859 - Placing Lampposts 树形DP 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVa 1292 - Strategic game (树形dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: 点击打开链接 题目大意 给定一棵树,选择尽量少的节点,使得每个没有选中的结点至少和一个已选结点相邻. 思路 ...
- Uva LA 3902 - Network 树形DP 难度: 0
题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...
随机推荐
- [Linux] ubuntu下查看CHM的软件
本文旨在介绍linux下的常见chm阅读软件及其安装,并针对一些问题给出解决方法. 一.CHMSEE 这个比较常见了,呵呵. 安装: sudo apt-get install chmsee 之后在应用 ...
- BP反向传播算法的工作原理How the backpropagation algorithm works
In the last chapter we saw how neural networks can learn their weights and biases using the gradient ...
- jenkins中“Poll SCM”和“Build periodically”的区别
Poll SCM:定时检查源码变更(根据SCM软件的版本号),如果有更新就checkout最新code下来,然后执行构建动作.我的配置如下: */5 * * * * (每5分钟检查一次源码变化) B ...
- 这两天对OKR简单总结
依据两天的学习对OKR进行一个总结. 1.OKR的本质是目标管理. 公司制定公司的战略目标,须要全体员工都可以聚焦到这个目标上来而且形成最大的合力. 公司制定公司层面的OKR.然后员工依据公司的目标. ...
- 转: SSH 公钥认证
转: http://blog.knownsec.com/2012/05/ssh-%E5%85%AC%E9%92%A5%E8%AE%A4%E8%AF%81/ SSH 公钥认证 2012-05-15 简介 ...
- XML,dom4j和Java
看了“罗辑思维”的节目,终于克服了自己的拖延症,开始动笔写这篇文章了. 写这篇文章的目的是把XML的解析,萃取和验证都尽量覆盖一下,存储以便日后备考,使用的包是dom4j,涉及语言是Java. dom ...
- STL - 函数作为算法的参数
函数作为参数,相当于C++的函数指针, C#的委托 for_each函数参数: #include <iostream> #include <algorithm> #includ ...
- 总结一些Android好用的开源库
1.android-viewFlow https://github.com/pakerfeldt/android-viewflow 2. android-viewbadger https://gith ...
- iOS-字符串拼接
// // main.m // /* 将两个字符串 NSString * str1 = @"123"; NSString * str2 = @"abc"; 拼接 ...
- sql各种连接详解
迁移时间:2017年6月1日16:33:58 CreateTime--2016年9月14日11:19:00Author:Marydon sql各种连接详解 参考链接: http://www.jb5 ...