Spark源码分析之-scheduler模块
这位写的非常好, 让我对Spark的源码分析, 变的轻松了许多
这里自己再梳理一遍

先看一个简单的spark操作,

val sc = new SparkContext(……)
val textFile = sc.textFile("README.md")
textFile.filter(line => line.contains("Spark")).count()

 

1. SparkContext

这是Spark的入口, 任何需要使用Spark的地方都需要先创建SparkContext

在SparkContext中, 最主要的初始化工作就是start TaskScheduler和DAGScheduler, 这两个就是Spark的核心所在

Spark的设计非常的干净, 把整个DAG抽象层从实际的task执行中剥离了出来

DAGScheduler, 负责解析spark命令, 生成stage, 形成DAG, 最终划分成tasks, 提交给TaskScheduler, 他只完成静态分析

TaskScheduler, 专门负责task执行, 他只负责资源管理, task分配, 执行情况的报告

这样的好处, 就是Spark可以通过提供不同的TaskScheduler简单的支持各种资源调度和执行平台, 现在Spark支持, local, standalone, mesos, Yarn...

class SparkContext(
val master: String,
val appName: String,
val sparkHome: String = null,
val jars: Seq[String] = Nil,
val environment: Map[String, String] = Map(),
// This is used only by yarn for now, but should be relevant to other cluster types (mesos, etc) too.
// This is typically generated from InputFormatInfo.computePreferredLocations .. host, set of data-local splits on host
val preferredNodeLocationData: scala.collection.Map[String, scala.collection.Set[SplitInfo]] = scala.collection.immutable.Map())
extends Logging { // Create and start the scheduler
private var taskScheduler: TaskScheduler = {
//.......
}
taskScheduler.start() @volatile private var dagScheduler = new DAGScheduler(taskScheduler)
dagScheduler.start()
}

 

2. sc.textFile

然后当然要载入被处理的数据, 最常用的textFile, 其实就是生成HadoopRDD, 作为起始的RDD

  /**
* Read a text file from HDFS, a local file system (available on all nodes), or any
* Hadoop-supported file system URI, and return it as an RDD of Strings.
*/
def textFile(path: String, minSplits: Int = defaultMinSplits): RDD[String] = {
hadoopFile(path, classOf[TextInputFormat], classOf[LongWritable], classOf[Text], minSplits)
.map(pair => pair._2.toString)
}
  /** Get an RDD for a Hadoop file with an arbitrary InputFormat */
def hadoopFile[K, V](
path: String,
inputFormatClass: Class[_ <: InputFormat[K, V]],
keyClass: Class[K],
valueClass: Class[V],
minSplits: Int = defaultMinSplits
) : RDD[(K, V)] = {
val conf = new JobConf(hadoopConfiguration)
FileInputFormat.setInputPaths(conf, path)
new HadoopRDD(this, conf, inputFormatClass, keyClass, valueClass, minSplits)
}

 

3. Transform and Action

这里调用的filter transform很简单, 可以参考前面的blog

关键调用count action, action的不同在于, 会调用runjob

所以在调用action之前, job都是没有被真正执行的

  def count(): Long = {// 只有在action中才会真正调用runJob, 所以transform都是lazy的
sc.runJob(this, (iter: Iterator[T]) => { // count调用的是简化版的runJob, 只传入rdd和func, 其他的会用默认值补全
var result = 0L
while (iter.hasNext) {
result += 1L
iter.next()
}
result
}).sum
}

 

4. sc.runJob

关键在于调用了dagScheduler.runJob

  /**
* Run a function on a given set of partitions in an RDD and pass the results to the given
* handler function. This is the main entry point for all actions in Spark. The allowLocal
* flag specifies whether the scheduler can run the computation on the driver(创建SparkContext的进程) rather than
* shipping it out to the cluster, for short actions like first().
*/
def runJob[T, U: ClassManifest](
rdd: RDD[T], //只需要传入Final RDD, 前面的可以根据dependency推出
func: (TaskContext, Iterator[T]) => U, //action的逻辑,比如count逻辑
partitions: Seq[Int], //partition的个数
allowLocal: Boolean, //对于一些简单的action,是否允许在local执行
resultHandler: (Int, U) => Unit) { //会在JobWaiter的taskSucceeded中用于处理task result
val callSite = Utils.formatSparkCallSite
logInfo("Starting job: " + callSite)
val start = System.nanoTime
val result = dagScheduler.runJob(rdd, func, partitions, callSite, allowLocal, resultHandler,
localProperties.get)
logInfo("Job finished: " + callSite + ", took " + (System.nanoTime - start) / 1e9 + " s")
rdd.doCheckpoint()
result
}

Spark源码分析 – SparkContext的更多相关文章

  1. Spark 源码分析 -- task实际执行过程

    Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给Task ...

  2. Spark源码分析 – 汇总索引

    http://jerryshao.me/categories.html#architecture-ref http://blog.csdn.net/pelick/article/details/172 ...

  3. Spark源码分析(三)-TaskScheduler创建

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3879151.html 在SparkContext创建过程中会调用createTaskScheduler函 ...

  4. Spark源码剖析 - SparkContext的初始化(二)_创建执行环境SparkEnv

    2. 创建执行环境SparkEnv SparkEnv是Spark的执行环境对象,其中包括众多与Executor执行相关的对象.由于在local模式下Driver会创建Executor,local-cl ...

  5. Spark源码剖析 - SparkContext的初始化(三)_创建并初始化Spark UI

    3. 创建并初始化Spark UI 任何系统都需要提供监控功能,用浏览器能访问具有样式及布局并提供丰富监控数据的页面无疑是一种简单.高效的方式.SparkUI就是这样的服务. 在大型分布式系统中,采用 ...

  6. 【转】Spark源码分析之-deploy模块

    原文地址:http://jerryshao.me/architecture/2013/04/30/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B- ...

  7. Spark源码分析:多种部署方式之间的区别与联系(转)

    原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的 ...

  8. Spark源码分析 – Shuffle

    参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉 Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memo ...

  9. Spark源码分析 -- TaskScheduler

    Spark在设计上将DAGScheduler和TaskScheduler完全解耦合, 所以在资源管理和task调度上可以有更多的方案 现在支持, LocalSheduler, ClusterSched ...

随机推荐

  1. 由于link顺序错误导致的undefined reference

    其实我之前就遇到过这个问题,也强调过,GNU-G++在link阶段是依赖输入的.o或者.a文件的顺序的.如果顺序错误会导致undefined reference错误 见这篇随笔:http://www. ...

  2. Android开发之Fragment传递參数的几种方法

    Fragment在Android3.0開始提供,而且在兼容包中也提供了Fragment特性的支持. Fragment的推出让我们编写和管理用户界面更快捷更方便了. 但当我们实例化自己定义Fragmen ...

  3. CentOS 7使用systemctl如何补全服务名称

    CentOS 7使用systemctl如何补全服务名称 因为CentOS7的默认安装类型是最小安装,所以默认没有自动补全的功能.要启用这个功能,你需要安装一个bash-completion包,然后退出 ...

  4. C++ 运算符重载四(自定义数组类)

    //自定义数组类 #include<iostream> using namespace std; //分析:能获取数组长度,添加元素,删除元素,修改元素 //要求重载[],=,==,!=运 ...

  5. Servlet中Request的getAttribute getParameter 区别

    1.从更深的层次考虑,request.getParameter()方法传递的数据,会从Web客户端传到Web服务器端,代表HTTP请求数据. request.getParameter()方法返回Str ...

  6. 第二百六十二节,Tornado框架-cookie

    Tornado框架-cookie Cookie 是网站用来在客户端保存识别用户的一种小文件.一般来用库可以保存用户登 录信息.购物数据信息等一系列微小信息. self.set_cookie()方法,创 ...

  7. Collection接口都是通过Iterator()(即迭代器)来对Set和List遍历

    以下介绍接口: List接口:(介绍其下的两个实现类:ArrayList和LinkedList) ArrayList和数组非常类似,其底层①也用数组组织数据,ArrayList是动态可变数组. ① 底 ...

  8. jQuery实现瀑布流布局详解(PC和移动端)

    首先我们将如下样式的若干个单元写进body中,并将“box”向左浮动: <div class="box">  <img class="img" ...

  9. Linq循环DataTable,使用匿名对象取出需要的列

    var g_id = context.Request["g_id"]; DataTable dt = new DataTable(); var sql = @"selec ...

  10. ArcGIS Android SDK 中文标注乱码

    Android使用如下代码添加标注: TextSymbol ts = new TextSymbol(12, "名称", Color.RED);Graphic gp = new Gr ...