MapReduce自定义InputFormat和OutputFormat
一、自定义InputFormat
需求:将多个小文件合并为SequenceFile(存储了多个小文件) 存储格式:文件路径+文件的内容 c:/a.txt I love Beijing
c:/b.txt I love China inputFormat(自定义加上路径)
1.Mapper类
package com.css.inputformat; import java.io.IOException; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit; public class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable>{ Text k = new Text(); @Override
protected void setup(Context context)
throws IOException, InterruptedException {
// 1.拿到切片信息
FileSplit split = (FileSplit) context.getInputSplit();
// 2.路径
Path path = split.getPath();
// 3.即带路径又带名称
k.set(path.toString());
} @Override
protected void map(NullWritable key, BytesWritable value,Context context)
throws IOException, InterruptedException {
// 输出
context.write(k, value);
}
}
2.Reducer类
package com.css.inputformat; import java.io.IOException; import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class SequenceFileReducer extends Reducer<Text, BytesWritable, Text, BytesWritable>{ @Override
protected void reduce(Text key, Iterable<BytesWritable> values,
Context context) throws IOException, InterruptedException {
for (BytesWritable v : values) {
context.write(key, v);
}
}
}
3.自定义InputFormat类
package com.css.inputformat; import java.io.IOException; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; /**
* 1.创建自定义Inputformat
*/
public class FuncFileInputFormat extends FileInputFormat<NullWritable, BytesWritable>{ @Override
protected boolean isSplitable(JobContext context, Path filename) {
// 不切原来的文件
return false;
} @Override
public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException {
FuncRecordReader RecordReader = new FuncRecordReader();
return RecordReader;
}
}
4.自定义RecordReader类
package com.css.inputformat; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit; /**
* 2.编写RecordReader
*/
public class FuncRecordReader extends RecordReader<NullWritable, BytesWritable>{ boolean isProcess = false;
FileSplit split;
Configuration conf;
BytesWritable value = new BytesWritable();
// 初始化
@Override
public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
// 初始化文件切片
this.split = (FileSplit) split;
// 初始化配置信息
conf = context.getConfiguration();
} @Override
public boolean nextKeyValue() {
if (!isProcess) {
// 1.根据切片的长度来创建缓冲区
byte[] buf = new byte[(int)split.getLength()];
FSDataInputStream fis = null;
FileSystem fs = null;
try {
// 2.获取路径
Path path = split.getPath(); // 3.根据路径获取文件系统
fs = path.getFileSystem(conf); // 4.拿到输出流
fis = fs.open(path); // 5.数据拷贝
IOUtils.readFully(fis, buf, 0, buf.length); // 6.拷贝缓存到最终的输出
value.set(buf, 0, buf.length);;
} catch (Exception e) {
e.printStackTrace();
} finally {
IOUtils.closeStream(fis);
IOUtils.closeStream(fs);
} isProcess = true;
return true;
}
return false;
} @Override
public NullWritable getCurrentKey() throws IOException, InterruptedException {
return NullWritable.get();
} @Override
public BytesWritable getCurrentValue() throws IOException, InterruptedException {
return value;
} @Override
public float getProgress() throws IOException, InterruptedException {
return 0;
} @Override
public void close() throws IOException {
}
}
5.Driver类
package com.css.inputformat; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; public class SequenceDriver {
public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
// 1.获取job信息
Configuration conf = new Configuration();
Job job = Job.getInstance(conf); // 2.获取jar包
job.setJarByClass(SequenceDriver.class); // 3.获取自定义的mapper与reducer类
job.setMapperClass(SequenceFileMapper.class);
job.setReducerClass(SequenceFileReducer.class); // 4.设置自定义读取方式
job.setInputFormatClass(FuncFileInputFormat.class);
// 5.设置默认的输出方式
job.setOutputFormatClass(SequenceFileOutputFormat.class); // 6.设置map输出的数据类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(BytesWritable.class); // 7.设置reduce输出的数据类型(最终的数据类型)
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(BytesWritable.class); // 8.设置输入存在的路径与处理后的结果路径
FileInputFormat.setInputPaths(job, new Path("c:/in1027/"));
FileOutputFormat.setOutputPath(job, new Path("c:/out1027/")); // 9.提交任务
boolean rs = job.waitForCompletion(true);
System.out.println(rs ? 0 : 1);
}
}
6.输入小文件
(1)a.txt
I love Beijing
(2)b.txt
I love China
(3)c.txt
Bejing is the capital of China
7.输出文件part-r-00000
SEQorg.apache.hadoop.io.Text"org.apache.hadoop.io.BytesWritable 嫜瑻z萶2
?擎? ( file:/c:/in1027/a.txt I love Beijing & file:/c:/in1027/b.txt I love China 8 file:/c:/in1027/c.txt Bejing is the capital of China
需求:过滤日志文件
把包含main的放在一个文件中 d:/main.logs
把不包含main的放在另外一个文件 d:/other.logs
1.Mapper类
package com.css.outputformat; import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class FileMapper extends Mapper<LongWritable, Text, Text, NullWritable>{ @Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 输出
context.write(value, NullWritable.get());
}
}
2.Reducer类
package com.css.outputformat; import java.io.IOException; import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class FileReducer extends Reducer<Text, NullWritable, Text, NullWritable>{ @Override
protected void reduce(Text key, Iterable<NullWritable> values,
Context context) throws IOException, InterruptedException {
// 数据换行
String k = key.toString() + "\n";
context.write(new Text(k), NullWritable.get());
}
}
3.自定义OutputFormat类
package com.css.outputformat; import java.io.IOException; import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FuncFileOutputFormat extends FileOutputFormat<Text, NullWritable>{ @Override
public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job)
throws IOException, InterruptedException {
FileRecordWriter fileRecordWriter = new FileRecordWriter(job);
return fileRecordWriter;
}
}
4.自定义RecordWriter类
package com.css.outputformat; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext; public class FileRecordWriter extends RecordWriter<Text, NullWritable>{ Configuration conf = null;
FSDataOutputStream mainlog = null;
FSDataOutputStream otherlog = null; // 1.定义数据输出路径
public FileRecordWriter(TaskAttemptContext job) throws IOException{
// 获取配置信息
conf = job.getConfiguration();
// 获取文件系统
FileSystem fs = FileSystem.get(conf);
// 定义输出路径
mainlog = fs.create(new Path("c:/outputmain/main.logs")); // part-r-00000
otherlog = fs.create(new Path("c:/outputother/other.logs"));
} // 2.数据输出
@Override
public void write(Text key, NullWritable value) throws IOException, InterruptedException {
// 判断的话根据key
if (key.toString().contains("main")) {
// 写出到文件
mainlog.write(key.getBytes());
}else {
otherlog.write(key.getBytes());
}
} // 3.关闭资源
@Override
public void close(TaskAttemptContext context) throws IOException, InterruptedException {
if (null != mainlog) {
mainlog.close();
}
if (null != otherlog) {
otherlog.close();
}
}
}
5.Driver类
package com.css.outputformat; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FileDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1.获取job信息
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2.获取jar包
job.setJarByClass(FileDriver.class);
// 3.获取自定义的mapper与reducer类
job.setMapperClass(FileMapper.class);
job.setReducerClass(FileReducer.class);
// 4.设置map输出的数据类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
// 5.设置reduce输出的数据类型(最终的数据类型)
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
// 6.设置自定义outputFormat
job.setOutputFormatClass(FuncFileOutputFormat.class);
// 7.设置输入存在的路径与处理后的结果路径
FileInputFormat.setInputPaths(job, new Path("c:/in1029/"));
FileOutputFormat.setOutputPath(job, new Path("c:/out1029/"));
// 8.提交任务
boolean rs = job.waitForCompletion(true);
System.out.println(rs ? 0 : 1);
}
}
6.输入文件data.logs
http://www.baidu.com
http://taobao.com
http://jd.com
http://it.com
http://main.js
http://qq.com
http://main.com.cn
7.输出文件
(1)main.logs
http://main.com.cn
http://main.js (2)other.logs
http://it.com
http://jd.com
http://qq.com
http://taobao.com
http://www.baidu.com
MapReduce自定义InputFormat和OutputFormat的更多相关文章
- 【Hadoop离线基础总结】MapReduce自定义InputFormat和OutputFormat案例
MapReduce自定义InputFormat和OutputFormat案例 自定义InputFormat 合并小文件 需求 无论hdfs还是mapreduce,存放小文件会占用元数据信息,白白浪费内 ...
- 自定义InputFormat和OutputFormat案例
一.自定义InputFormat InputFormat是输入流,在前面的例子中使用的是文件输入输出流FileInputFormat和FileOutputFormat,而FileInputFormat ...
- 自定义inputformat和outputformat
1. 自定义inputFormat 1.1 需求 无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案 1.2 分析 小文件的优 ...
- MapReduce自定义InputFormat,RecordReader
MapReduce默认的InputFormat是TextInputFormat,且key是偏移量,value是文本,自定义InputFormat需要实现FileInputFormat,并重写creat ...
- 【转自】自定义InputFormat、OutputFormat
转自:http://www.cnblogs.com/xiaolong1032/p/4529534.html 一:自定义实现InputFormat *数据源来自于内存*1.InputFormat是用于处 ...
- MapReduce之自定义InputFormat
在企业开发中,Hadoop框架自带的InputFormat类型不能满足所有应用场景,需要自定义InputFormat来解决实际问题. 自定义InputFormat步骤如下: (1)自定义一个类继承Fi ...
- Hadoop中常用的InputFormat、OutputFormat(转)
Hadoop中的Map Reduce框架依赖InputFormat提供数据,依赖OutputFormat输出数据,每一个Map Reduce程序都离不开它们.Hadoop提供了一系列InputForm ...
- Hadoop权威指南: InputFormat,RecordReader,OutputFormat和RecordWriter
InputFormat和RecordReader Hadoop提出了InputFormat的概念 org.apache.hadoop.mapreduce包里的InputFormat抽象类提供了如下列代 ...
- Hadoop案例(六)小文件处理(自定义InputFormat)
小文件处理(自定义InputFormat) 1.需求分析 无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案.将多个小文件合并 ...
随机推荐
- 基于jQuery select下拉框美化插件
分享一款基于jQuery select下拉框美化插件.该插件适用浏览器:IE8.360.FireFox.Chrome.Safari.Opera.傲游.搜狗.世界之窗.效果图如下: 在线预览 源码下 ...
- Android——Activity和Intent及Activity的生命周期
实验Activity的生命周期 package com.example.chenshuai.test; import android.app.Activity; import android.os.B ...
- Python之美[从菜鸟到高手]--NotImplemented小析
今天写代码时无意碰到NotImplemented,我一愣.难道是NotImplementedError的胞弟,所以略微研究了一下. NotImplemented故名思议.就是"未实现&quo ...
- Java中float/double取值范围与精度
Java浮点数 浮点数结构 要说清楚Java浮点数的取值范围与其精度,必须先了解浮点数的表示方法,浮点数的结构组成,之所以会有这种所谓的结构,是因为机器只认识01,你想表示小数,你要机器认识小数点这个 ...
- keep learning
fueling people’s creativity 助长了人们的创造力,燃烧了人们的激情
- 页面置换算 - FIFO、LFU、LRU
缓存算法(页面置换算法)-FIFO.LFU.LRU 在前一篇文章中通过leetcode的一道题目了解了LRU算法的具体设计思路,下面继续来探讨一下另外两种常见的Cache算法:FIFO.LFU 1 ...
- thinkphp 设置 支持模块多组
正常的访问地址是:localhost/项目名/index.php/Admin/Index/index 模块分组之后呢:localhost/项目名/index.php/Admin/System/Inde ...
- Spring Cloud是一系列框架的有序集合
Spring Cloud是一系列框架的有序集合.它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册.配置中心.消息总线.负载均衡.断路器.数据监控等,都可以用 ...
- QQ在线聊天代码获取和使用教程
在网站上挂上悬浮QQ是一种有效的推广方式,QQ正常情况下是不被允许临时会话的,需要加为好友才可以,这样很不友好, 当今每个行业都是有很多人在做,竞争很激烈,对客户的友好是增加订单的有效途径. 地址:h ...
- onTouch事件分发
事件机制 我们知道view中有onTouch,onClick, 1.并且onTouch优先于onClick执行, 2.onTouch有返回值,为true时onClick并不再执行了 因为一切VIew都 ...