现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

跑一遍克鲁斯卡尔,记录每种权值的边有多少条,然后状压枚举满足条件的所有边乘到答案中即可

/**************************************************************
Problem: 1016
User: walfy
Language: C++
Result: Accepted
Time:68 ms
Memory:1452 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct edge{
int u,v,c;
bool operator<(const edge &rhs)const{
return c<rhs.c;
}
}e[N];
map<int,int>ans,id;
vector<pii>v[N];
int fa[N],prefa[N];
int Find(int x)
{
return fa[x]==x?x:fa[x]=Find(fa[x]);
}
int main()
{
fio;
int n,m;
cin>>n>>m;
for(int i=;i<=n;i++)fa[i]=i;
int cnt=;
for(int i=;i<m;i++)
{
int a,b,c;
cin>>a>>b>>c;
e[i]={a,b,c};
}
sort(e,e+m);
for(int i=;i<m;i++)
{
if(!id[e[i].c])id[e[i].c]=++cnt;
v[id[e[i].c]].pb(mp(e[i].u,e[i].v));
int x=e[i].u,y=e[i].v;
int fx=Find(x),fy=Find(y);
if(fx!=fy)fa[fx]=fy,ans[e[i].c]++;
}
for(int i=;i<=n;i++)
if(Find(i)!=Find(i-))
{
cout<<<<"\n";
return ;
}
for(int i=;i<=n;i++)fa[i]=i;
map<int,int>::iterator it=id.begin();
ll res=;
for(;it!=id.end();it++)
{
for(int i=;i<=n;i++)prefa[i]=fa[i];
// for(int i=0;i<v[it->se].size();i++)printf("%d %d %d\n",i,v[it->se][i].fi,v[it->se][i].se);
// puts("");
ll len=v[it->se].size(),go=-,pp=;
for(int i=;i<(<<len);i++)
{
int num=;
for(int j=;j<len;j++)
if((i>>j)&)
num++;
if(num!=ans[it->fi])continue;
else
{ bool ok=;
for(int j=;j<len;j++)
{
if((i>>j)&)
{
int x=v[it->se][j].fi,y=v[it->se][j].se;
int fx=Find(x),fy=Find(y);
if(fx!=fy)fa[fx]=fy;
else ok=;
}
}
if(ok)pp++,go=i;//,printf("%d\n",i);
}
for(int j=;j<=n;j++)fa[j]=prefa[j];
}
// printf("%d\n",pp);
res=(res*pp)%;
if(go==-)continue;
for(int j=;j<len;j++)
{
if((go>>j)&)
{
int x=v[it->se][j].fi,y=v[it->se][j].se;
int fx=Find(x),fy=Find(y);
if(x!=y)fa[fx]=fy;
}
}
}
cout<<res<<"\n";
return ;
}
/***********************
4 6 1 2 1 1 3 1 1 4 1 2 3 2 2 4 1 3 4 3
***********************/

bzo1016: [JSOI2008]最小生成树计数的更多相关文章

  1. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  2. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  3. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  4. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  5. 【bzoj1016】[JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4863  Solved: 1973[Submit][St ...

  6. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  7. 【bzoj1016】 JSOI2008—最小生成树计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接) 题意 求图的最小生成树计数. Solution %了下题解,发现要写矩阵树,15 ...

  8. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  9. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

随机推荐

  1. C语言字符串/数组去重

    输入: hello 输出: helo 第一种实现: 不新开数组, 也就是原地去重. #include <stdio.h> #include <string.h> void re ...

  2. JMS术语

    Provider(MessageProvider):生产者Consumer(MessageConsumer):消费者PTP:Point to Point,即点对点的消息模型Pub/Sub:Publis ...

  3. 深入了解SQL Tuning Advisor(转载)

    1.前言:一直以来SQL调优都是DBA比较费力的技术活,而且很多DBA如果没有从事过开发的工作,那么调优更是一项头疼的工作,即使是SQL调优很厉害的高手,在SQL调优的过程中也要不停的分析执行计划.加 ...

  4. PHP计算上一个月最后一天、当月最后一天、下一个月最后一天

    上个月最后一天: $last_month_last_day = date('Y-m-t',strtotime('-1 month')); 当月最后一天: $first_day=date('Y-m-01 ...

  5. hdu5716

    地址: 题目: 带可选字符的多字符串匹配 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  6. 理解android分辨率限定符 layout-sw360dp

    首先,我们来看看单位dp是怎么一回事,dp是一种单位,使用它,你可以在高.低分辨率上获得一样的空间表现,也就是说,它是像素无关的. dp计算公式:160*pix/ppi(pix是你要计算的高度或者宽度 ...

  7. 【Unity3D】使用MD5值,确保本地Sqlite数据库内容没有被篡改

    Sqlite的应用场景 在判断是否使用存储格式为Sqlite模式的标准,我们的标准是内容只读.也就是说,除非发布者修改Sqlite内容,玩家只有读取的权限. 换个角度说,Sqlite里面的数据都是游戏 ...

  8. 51nod 1391 01串(hash+DP)

    题目链接题意:给定一个01串S,求出它的一个尽可能长的子串S[i..j],满足存在一个位置i<=x <=j, S[i..x]中0比1多,而S[x + 1..j]中1比0多.求满足条件的最长 ...

  9. 20145302张薇《Java程序设计》实验一报告

    20145302 <Java程序设计>实验一:Java开发环境的熟悉 实验内容 使用dos命令行编译.运行简单的Java程序: 使用IDEA编辑.编译.运行.调试Java程序. 1.命令行 ...

  10. 20145303 《Java程序设计》第7周学习总结

    20145303 <Java程序设计>第7周学习总结 教材学习内容总结 时间的度量 格林威治标准时间(GMT),现已不作为标准时间使用,即使标注为GMT(格林威治时间),实际上谈到的的是U ...