A. The Meaningless Game
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting.

The game consists of multiple rounds. Its rules are very simple: in each round, a natural number k is chosen. Then, the one who says (or barks) it faster than the other wins the round. After that, the winner's score is multiplied by k2, and the loser's score is multiplied by k. In the beginning of the game, both Slastyona and Pushok have scores equal to one.

Unfortunately, Slastyona had lost her notepad where the history of all n games was recorded. She managed to recall the final results for each games, though, but all of her memories of them are vague. Help Slastyona verify their correctness, or, to put it another way, for each given pair of scores determine whether it was possible for a game to finish with such result or not.

Input

In the first string, the number of games n (1 ≤ n ≤ 350000) is given.

Each game is represented by a pair of scores a, b (1 ≤ a, b ≤ 109) – the results of Slastyona and Pushok, correspondingly.

Output

For each pair of scores, answer "Yes" if it's possible for a game to finish with given score, and "No" otherwise.

You can output each letter in arbitrary case (upper or lower).

Example
Input
6
2 4
75 45
8 8
16 16
247 994
1000000000 1000000
Output
Yes
Yes
Yes
No
No
Yes
Note

First game might have been consisted of one round, in which the number 2 would have been chosen and Pushok would have won.

The second game needs exactly two rounds to finish with such result: in the first one, Slastyona would have said the number 5, and in the second one, Pushok would have barked the number 3.

题意,给出两个人的初始分值都是1,和结束分值(a,b),现在判断有没有可能通过数局游戏到达这个分值。

规则,每次选出一个自然数k,其中一个人的分值乘上k*k,另一个人就乘上k,反之亦然。

当时推出来式子了,却没想到怎么证明哎。

设进行了n局游戏,则有  a*b=(k1*k2*k3......kn)3,这个并不难证明,我们假设存在整数c=k1*k2*k3....*kn使得等式成立,

则c=cbrt(a*b),接着就要找c和a,b的关系,如果c真的存在那么a,b都能整除以c,x=a/c,y=b/c;

如果x,y是正确的解那么代回去之后   a=x*x*y  b=y*y*x; 判断一下就好了。

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
int main()
{
int n;
LL a,b;
scanf("%d",&n);
while(n--){
scanf("%lld%lld",&a,&b);
LL c=cbrt((long double)a*b);
LL x=a/c,y=b/c;
if(a==x*x*y&&b==y*y*x) puts("Yes");
else puts("No");
}
return ;
}

上面是看的别人的其实这个思路不是很好懂,如果c存在的话,那么我们可以二分出c的值进行判定c*c*c==a*b是否成立即可,但注意这并不是充要条件,

c还要满足 a%c==0&&b%c==0没写这两个导致我WA

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
LL solve(LL a,LL b)
{
LL l=,r=1e6;
while(l<r){
LL mid=(l+r)>>;
LL m3=mid*mid*mid;
if(m3==a*b&&a%mid==&&b%mid==) return ;
else if (m3>a*b) r=mid-;
else l=mid+;
}
if(l==r&&l*l*l==a*b&&a%l==&&b%l==) return ;
return ;
}
int main()
{
int n;
LL a,b;
scanf("%d",&n);
while(n--){
scanf("%lld%lld",&a,&b);
if(solve(a,b)) puts("Yes");
else puts("No");
}
return ;
}

cf 833 A 数论的更多相关文章

  1. CF 833 B. The Bakery

    B. The Bakery http://codeforces.com/contest/833/problem/B 题意: 将一个长度为n的序列分成k份,每份的cost为不同的数的个数,求最大cost ...

  2. 【题解】CF#833 B-The Bakery

    一个非常明显的 \(nk\) dp 状态 \(f[i][k]\) 表示以 \(i\) 为第 \(k\) 段的最后一个元素时所能获得的最大代价.转移的时候枚举上一段的最后一个元素 \(j\)更新状态即可 ...

  3. CF 980D Perfect Groups(数论)

    CF 980D Perfect Groups(数论) 一个数组a的子序列划分仅当这样是合法的:每个划分中的任意两个数乘积是完全平方数.定义a的权值为a的最小子序列划分个数.现在给出一个数组b,问权值为 ...

  4. CF 984C Finite or not? (数论)

    CF 984C Finite or not? (数论) 给定T(T<=1e5)组数据,每组数据给出十进制表示下的整数p,q,b,求问p/q在b进制意义下是否是有限小数. 首先我们先把p/q约分一 ...

  5. cf 450b 矩阵快速幂(数论取模 一大坑点啊)

    Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...

  6. CF 371B Fox Dividing Cheese[数论]

    B. Fox Dividing Cheese time limit per test 1 second memory limit per test 256 megabytes input standa ...

  7. cf(#div1 B. Dreamoon and Sets)(数论)

    B. Dreamoon and Sets time limit per test 1 second memory limit per test 256 megabytes input standard ...

  8. cf(#div1 A. Dreamoon and Sums)(数论)

    A. Dreamoon and Sums time limit per test 1.5 seconds memory limit per test 256 megabytes input stand ...

  9. cf 645F Cowslip Collections 组合数学 + 简单数论

    http://codeforces.com/contest/645/problem/F F. Cowslip Collections time limit per test 8 seconds mem ...

随机推荐

  1. 20165324 Java实验五 网络编程与安全

    20165324 Java实验五 网络编程与安全 一.实验报告封面 课程:Java程序设计 班级:1653班 姓名:何春江 学号:20165324 指导教师:娄嘉鹏 实验日期:2018年5月28日 实 ...

  2. 这样才能使本地Mysql服务允许被外部主机连接(两步)

    网上的N多方法都不全面,只有下面的第一步或第二步是不行的,必须同时执行下面两步操作: 修改mysql.user表 以root或debian-sys-maint身份登录mysql $ mysql -u ...

  3. jenkins slave启动报错:hudson.util.IOException2: Slave JVM has terminated. Exit code=126

    添加mac slave节点报错如下:Expanded the channel window size to 4MB [11/07/14 19:11:54] [SSH] Starting slave p ...

  4. linux用户 群组权限

    用户及passwd文件 /etc/passwd文件的功能 /etc/passwd文件每个字段的具体含义 shadow文件 /etc/shadow文件的功能 /etc/shadow文件每个字段的具体含义 ...

  5. vueRouter点击打开新页签

    一.vue 路由使用 vue是单页面SPA,一般我们使用vue-router 设定路由进行页面跳转的时候,都是直接覆盖当前页面.比如,在a页面中有如下超链接 <router-link to=&q ...

  6. PKU 3318 Matrix Multiplication(神奇的输入)

    #include<cstdio> using namespace std; ][]; ][],C[][]; int Read() { ; ; while((ch=getchar())==' ...

  7. spring boot 总结

    一.什么是SpringBoot 描述:Spring Boot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目.大多数SpringBoot项目只需要很少的配置文件.二.Spr ...

  8. hust1010 The Minimum Length

    地址:http://acm.hust.edu.cn/problem/show/1010 题目: 1010 - The Minimum Length Time Limit: 1s Memory Limi ...

  9. 今天刚接触lua 写写环境配置和基本设置

    首先是安装开发工具: Quick: http://www.tairan.com/engines-download 引擎 Sublime Text的下载地址为:http://www.sublimetex ...

  10. linux下多线程之pthread_detach(pthread_self())

    写个碰到的问题,记录下自己的技术之路点滴pthread_detach(pthread_self())linux线程执行和windows不同,pthread有两种状态joinable状态和unjoina ...