poj_2186 强连通分支
题目大意
有N头牛,他们中间有些牛会认为另外一些牛“厉害”,且这种认为会传递,即若牛A认为牛B“厉害”,牛B认为牛C“厉害”,那么牛A也认为牛C“厉害”。现给出一些牛的数对(x, y)表示牛x认为牛y厉害。那么,求出所有的牛都认为该牛“厉害”的牛的个数。
题目分析
牛之间的关系,形成一个有向图。其中存在一些强连通分支,若强连通分支内的一个牛被所有牛认为“厉害”,那么整个强连通分支内的牛都被认为“厉害”。因此,将强连通分支合并为一个点,对图重构。
重构后的图为一个简单的有向图,题目转换为寻找能从所有点均可达的点的数目(实际数目为点代表的强连通分支内的点数目之和)。使用定理有向无环图中出度为0的点,可以从任何出度不为0的点到达
。
因此,寻找该有向无环图中出度为0的点的个数,若出度为0的点的个数大于1,则这些出度为0的点之间互相不可达,则不存在所有点均可达的点;若出度为0的点的个数为1,则该出度为0的点代表的强连通分支内点的个数,即为题目的结果。
实现(c++)
#include<stdio.h>
#include<string.h>
#include<vector>
#include<stack>
#include<algorithm> using namespace std;
#define MAX_NODE 10005
#define min(a, b) a < b? a:b vector<int> gGraph[MAX_NODE];
stack<int> gStack;
bool gVisited[MAX_NODE]; //判断点是否被访问过
bool gInStack[MAX_NODE]; //判断点是否在栈中
int gDfn[MAX_NODE]; //在DFS过程中,点第一次被访问到的时间
int gLow[MAX_NODE]; //点x下方的点所能到达的序号最小的点的序号
int gIndex; int gClusterIndex;
int gClusterOfNode[MAX_NODE]; //每个点所属的强连通分支序号 //强连通分支结构体
struct Cluster{
int cluster_id;
int node_num;
vector<int> linked_cluster;
Cluster(int id, int num) :cluster_id(id), node_num(num){};
bool LinkedCluster(int cluster){
return find(linked_cluster.begin(), linked_cluster.end(), cluster) != linked_cluster.end();
}
void LinkCluster(int cluster){
linked_cluster.push_back(cluster);
}
~Cluster(){
linked_cluster.clear();
}
}; vector<Cluster> gClusters;
//tarjan 算法求强连通分支
void Tarjan(int u){
gDfn[u] = gLow[u] = ++gIndex;
gVisited[u] = true;
gInStack[u] = true;
gStack.push(u);
for (int i = 0; i < gGraph[u].size(); i++){
int v = gGraph[u][i];
if (gVisited[v] == false){
Tarjan(v);
gLow[u] = min(gLow[u], gLow[v]);
}
else if(gInStack[v]){ //注意,需要v在栈中才可以
gLow[u] = min(gLow[u], gDfn[v]);
}
}
if (gDfn[u] == gLow[u]){
int v, num = 0;
do{
v = gStack.top();
gClusterOfNode[v] = gClusterIndex;
gStack.pop();
gInStack[v] = false; //注意恢复
num++;
} while (u != v);
gClusters.push_back(Cluster(gClusterIndex, num)); gClusterIndex++;
}
} //将强连通分支的各个点染色之后,再重新建图
void ReconstructGraph(int n){
for (int u = 1; u <= n; u++){
for (int j = 0; j < gGraph[u].size(); j++){
int v = gGraph[u][j];
int uc = gClusterOfNode[u];
int vc = gClusterOfNode[v];
if (uc != vc && !gClusters[uc].LinkedCluster(vc))
gClusters[uc].LinkCluster(vc);
}
}
}
/*
int gRoot[MAX_NODE];
int GetRoot(int c){
if (gRoot[c] != c){
gRoot[c] = GetRoot(gRoot[c]);
}
return gRoot[c];
}
void Union(int c1, int c2){
int p1 = GetRoot(c1);
int p2 = GetRoot(c2);
if (p1 != p2){
gRoot[p1] = p2;
}
} bool DAG(){ //判断一个图是否为连通图,在此题中,可以不用判断
int n = gClusters.size(); for (int i = 0; i < n; i++){
gRoot[i] = i;
} for (int u = 0; u < n; u++){
for (int i = 0; i < gClusters[u].linked_cluster.size(); i++){
int v = gClusters[u].linked_cluster[i];
Union(u, v);
}
}
int r = GetRoot(0);
for (int i = 1; i < n; i ++){
if (r != GetRoot(i)){
return false;
}
}
return true;
}
*/
int main(){
int n, m, u, v;
while (scanf("%d %d", &n, &m) != EOF){
for (int i = 0; i <= n; i++){
gGraph[i].clear();
}
for (int i = 0; i < m; i++){
scanf("%d %d", &u, &v);
gGraph[u].push_back(v);
}
gIndex = 0;
gClusterIndex = 0;
memset(gInStack, false, sizeof(gInStack));
memset(gVisited, false, sizeof(gVisited));
gClusters.clear(); //Tarjan 求强连通分支
for (int i = 1; i <= n; i++){
if (!gVisited[i]){
Tarjan(i);
}
} //重新构图
ReconstructGraph(n); /*
if (!DAG()){
printf("0\n");
continue;
}
*/
int zero_outdegree_cluster = 0, result = 0;
for (int i = 0; i < gClusterIndex; i++){
if (gClusters[i].linked_cluster.empty()){
zero_outdegree_cluster++;
result = gClusters[i].node_num;
}
}
//若重构后的图中各个点不能构成一个连通图(将有向边变为无向边之后仍不能),那么就不存在一个点可以被其他所有点可达
//而此时,图中也肯定存在多于1个点,其出度为0.
//故,只需要判断重构后的图中,出度为0的点是否为1个即可。若出度为0的点有且只有一个,则返回该“点”(实际为一个强连通分支)
//中的点的数目,否则,返回0 if (zero_outdegree_cluster > 1){
result = 0;
}
printf("%d\n", result);
}
return 0;
}
poj_2186 强连通分支的更多相关文章
- Kosaraju 算法查找强连通分支
有向图 G = (V, E) 的一个强连通分支(SCC:Strongly Connected Components)是一个最大的顶点集合 C,C 是 V 的子集,对于 C 中的每一对顶点 u 和 v, ...
- poj 2553 强连通分支与缩点
思路:将所有强连通分支找出来,并进行缩点,然后找其中所有出度为0的连通分支,就是题目要求的. #include<iostream> #include<cstdio> #incl ...
- poj 2186 强连通分支 和 spfa
思路: 建图时,分别建正向图edge和转置图T.用正向图edge来DFS,找出第一个被发现的强连通分支(如果该图存在题目要求的点,那么一定就是第一个被发现的).然后用spfa跑转置图T,判断被发现的点 ...
- poj 1236 Network of Schools【强连通求孤立强连通分支个数&&最少加多少条边使其成为强连通图】
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 13800 Accepted: 55 ...
- 基于visual Studio2013解决算法导论之050强连通分支
题目 强连通分支 解决代码及点评 // 强连通分支.cpp : 定义控制台应用程序的入口点. // #include<iostream> #define MAX 100 using ...
- 有向图强连通分支的Tarjan算法讲解 + HDU 1269 连通图 Tarjan 结题报告
题目很简单就拿着这道题简单说说 有向图强连通分支的Tarjan算法 有向图强连通分支的Tarjan算法伪代码如下:void Tarjan(u) {dfn[u]=low[u]=++index//进行DF ...
- poj_2553 强连通分支&出度为0的点
题目大意 N个点的有向图中,定义“好点”为: 从该点v出发可以到达的所有点u,均有一条路径使得u可达v. 求出图中所有的“好点”,并按照顺序从小到大输出出来. 题目分析 图存在多个强连通分支,强连通分 ...
- poj_1236 强连通分支
题目大意 有N个学校,这些学校之间用一些单向边连接,若学校A连接到学校B(B不一定连接到A),那么给学校A发一套软件,则学校B也可以获得.现给出学校之间的连接关系,求出至少给几个学校分发软件,才能使得 ...
- 【2186】Popular Cows(强连通分支及其缩点)
id=2186">[2186]Popular Cows(强联通分支及其缩点) Popular Cows Time Limit: 2000MS Memory Limit: 65536 ...
随机推荐
- 交叉编译Node.js到OpenWrt(HG255D)
操作系统:deepin linux 2013 或 ubuntu 13.04 1.安装交叉编译前.须要安装的包 sudo apt-get install build-essential subversi ...
- atitit.提升软件开发的生产力关健点-------大型开发工具最关健
atitit.提升软件开发的生产力关健点-------大型开发工具最关健 1. 可以创作出更好的工具遍历自己 1 2. 大型工具包括哪些方面 2 2.1. ide 2 2.2. dsl 2 2.3. ...
- spring cloud outh2
使用Spring Cloud Security OAuth2搭建授权服务http://www.blogjava.net/paulwong/archive/2016/09/16/431797.html? ...
- Python操作Word【批量生成文章】
http://www.cnblogs.com/codex/p/4668396.html 需要做一些会议记录.总共有多少呢?五个地点x7个月份x每月4篇=140篇.虽然不很重要,但是140篇记录完全雷同 ...
- cocos2dx中CCTableView乱位问题歪解
可能是引擎作者没有考虑到CCTableView里cell还会改变的需求,结果改变了 cell后其它的cell也跟着改变了.于是在网上查了一下,发现没有人遇到我的 问题,看来我总是遇到奇葩问题,不过也找 ...
- Ubuntu 12.04 Subversion及GUI客户端RabbitVCS安装
(经过一天的使用,发现pygtk的内存泄漏问题严重影响使用,需要打一下deepin ui做的补丁:https://github.com/linuxdeepin/deepin-ui) 1. 类似Tort ...
- [Linux]read/write和fread/fwrite有什么区别
转自:http://blog.csdn.net/xiaofei0859/article/details/51145051 二者都是对文件进行操作,那么二者有什么区别,用的时候该如何选择呢? 1. 区别 ...
- [基础]关于extern指针和数组的用法
之前有在外面面试,遇到一题如下: filea.c char *p = "abcdefg"; fileb.c extern char p[]; printf(]); result=? ...
- CSS——div居中,window.open(0
margin:0 auto 表示什么意思?? margin后面如果只有两个参数的话,第一个表示top和bottom,第二个表示left和right因为0 auto,表示上下边界为0,左右则根据宽度自适 ...
- 怎样实时判断socket连接状态?
对端正常close socket,或者进程退出(正常退出或崩溃),对端系统正常关闭 这种情况下,协议栈会走正常的关闭状态转移,使用epoll的话,一般要判断如下几个情况 处理可读事件时,在循环read ...