http://www.chinacloud.cn/show.aspx?id=25992&cid=12

本文中,笔者将介绍OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值,它的结构如下图所示:

  

  Input Image -> Detect

  输入:原始的可能含有人脸的图像。

  输出:人脸位置的bounding box。

  这一步一般我们称之为“人脸检测”(Face Detection),在OpenFace中,使用的是dlib、OpenCV现有的人脸检测方法。此方法与深度学习无关,使用的特征是传统计算机视觉中的方法(一般是Hog、Haar等特征)。

  对人脸检测这一步感兴趣的可以参考下列资料:

  dlib的实现:http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html

  openCV的实现:Face Detection using Haar Cascades

  Detect -> Transform -> Crop

  输入:原始图像 + 人脸位置bounding box

  输出:“校准”过的只含有人脸的图像

  对于输入的原始图像 + bounding box,这一步要做的事情就是要检测人脸中的关键点,然后根据这些关键点对人脸做对齐校准。所谓关键点,就是下图所示的绿色的点,通常是眼角的位置、鼻子的位置、脸的轮廓点等等。有了这些关键点后,我们就可以把人脸“校准”,或者说是“对齐”。解释就是原先人脸可能比较歪,这里根据关键点,使用仿射变换将人脸统一“摆正”,尽量去消除姿势不同带来的误差。这一步我们一般叫Face Alignment。

  

  在OpenFace中,这一步同样使用的是传统方法,特点是比较快,对应的论文是:

  One Millisecond Face Alignment with an Ensemble of Regression Trees

  Crop -> Representation

  输入:校准后的单张人脸图像

  输出:一个向量表示。

  这一步就是使用深度卷积网络,将输入的人脸图像,转换成一个向量的表示。在OpenFace中使用的向量是128x1的,也就是一个128维的向量。

  我们可以先看一下VGG16的模型:

  

  VGG16是深度学习中一个比较简单的基本模型。输入神经网络的是图像,经过一系列卷积后,全连接分类得到类别概率。

  

  在通常的图像应用中,我们可以去掉全连接层,用计算的特征(一般就是卷积层的最后一层,e.g. 图中的conv5_3)来当作提取的特征进行计算。但如果对人脸识别问题同样采用这样的方法,即,使用卷积层最后一层做为人脸的“向量表示”,效果其实是不好的。如何改进?我们之后再谈,这里先谈谈我们希望这种人脸的“向量表示”应该具有哪些性质。

  在理想的状况下,我们希望“向量表示”之间的距离就可以直接反映人脸的相似度:

  对于同一个人的人脸图像,对应的向量的欧几里得距离应该比较小。

  对于不同人的人脸图像,对应的向量之间的欧几里得距离应该比较大。

  这种表示实际上就可以看做某种“embedding”。在原始的VGG16模型中,我们使用的是softmax损失,没有对每一类的向量表示之间的距离做出要求。所以不能直接用作人脸表示。

  举个例子,使用CNN对MNIST进行分类,我们设计一个特殊的卷积网络,让最后一层的向量变为2维,此时可以画出每一类对应的2维向量表示的图(图中一种颜色对应一种类别):

  

  上图是我们直接使用softmax训练得到的结果,它就不符合我们希望特征具有的特点:

  我们希望同一类对应的向量表示尽可能接近。但这里同一类(如紫色),可能具有很大的类间距离。

  我们希望不同类对应的向量应该尽可能远。但在图中靠中心的位置,各个类别的距离都很近。

  那么训练人脸特征表示的正确姿势是什么?其实有很多种方法。一种方法就是使用“center loss”。centor loss实际上是在softmax的loss上再加入一个损失,这个损失对每一类规定了一个“中心”点,每一类的特征应该离这个中心点比较近,而不同类的中心点离的比较远。加入center loss后,训练出的特征大致长这样:

  

  这样的特征表示就比较符合我们的要求了。center loss的原始论文在这里:http://ydwen.github.io/papers/WenECCV16.pdf 。上面这两幅图同样是从这篇论文中截下来的。

  顺带一提,除了center loss外。学习人脸特征表示的方法还有很多,如triplet loss(论文地址:A Unified Embedding for Face Recognition and Clustering)。triplet loss直接这样的用三元组(A的图像1,A的图像2,B的图像)来训练网络。去掉了最后的分类层,强迫神经网络对相同的人脸图像(三元组中的同一人A)建立统一的表达。

  实际应用

  输入:人脸的向量表示。

  有了人脸的向量表示后,剩下的问题就非常简单了。因为这种表示具有相同人对应的向量的距离小,不同人对应的向量距离大的特点。接下来一般的应用有以下几类:

  人脸验证(Face Identification)。就是检测A、B是否是属于同一个人。只需要计算向量之间的距离,设定合适的报警阈值(threshold)即可。

  人脸识别(Face Recognition)。这个应用是最多的,给定一张图片,检测数据库中与之最相似的人脸。显然可以被转换为一个求距离的最近邻问题。

  人脸聚类(Face Clustering)。在数据库中对人脸进行聚类,直接K-Means即可。

  后记

  以上给大家介绍了OpenFace中处理人脸问题的pipeline。需要特别指出的是,人脸相关的问题是一个比较大的方向,一篇文章显然是说不清楚的,这里只是基于OpenFace,对比较重要的方法还有名词做了一个解释。在OpenFace中,为了速度的考虑,提取人脸特征之前的Face Detection和Face Alignment就是使用的传统方法。实际上也可以换用精度更高的深度学习相关方法,比如在中科院山世光老师开源的人脸识别引擎seetaface/SeetaFaceEngine中,Face Alignment使用就是一个基于autoencoder网络的方法。另外,学习人脸特征同样有适合不同场景的不同方法,这些都是要进一步学习的。

使用OpenFace进行人脸识别(1)的更多相关文章

  1. 使用OpenFace进行人脸识别(2)

    http://blog.csdn.net/u011531010/article/details/52270023 http://www.vccoo.com/v/2ed520 第一步 在 openfac ...

  2. 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)

    在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...

  3. openFace 人脸识别框架测试

    openface  人脸识别框架  但个人感觉精度还是很一般 openface的githup文档地址:http://cmusatyalab.github.io/openface/ openface的安 ...

  4. 开源 人脸识别 openface 实用介绍 实例演示 训练自己的模型

    1.OpenFace 是 卡耐基梅陇(CMU)大学的一个图像+机器学习项目,整体程序包含:人脸发现,特征提取,特征神经网络训练,人脸识别这四部分. github   https://github.co ...

  5. openface人脸识别框架

    openface的githup文档地址:http://cmusatyalab.github.io/openface/ openface的安装: 官方推荐用docker来安装openface,这样方便快 ...

  6. OpenCV 和 Dlib 人脸识别基础

    00 环境配置 Anaconda 安装 1 下载 https://repo.anaconda.com/archive/ 考虑到兼容性问题,推荐下载Anaconda3-5.2.0版本. 2 安装 3 测 ...

  7. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

  8. OpenCV人脸识别LBPH算法源码分析

    1 背景及理论基础 人脸识别是指将一个需要识别的人脸和人脸库中的某个人脸对应起来(类似于指纹识别),目的是完成识别功能,该术语需要和人脸检测进行区分,人脸检测是在一张图片中把人脸定位出来,完成的是搜寻 ...

  9. jQuery 人脸识别插件,支持图片和视频

    jQuery Face Detection 是一款人脸检测插件,能够检测到图片,视频和画布中的人脸坐标.它跟踪人脸并输出人脸模型的坐标位置为一个数组.我们相信,面部识别技术能够给我们的 Web 应用带 ...

随机推荐

  1. Array.prototype.slice.call 和 slice以及call

    单独的简单介绍,后续再补上一些资料. 对象转换为数组. /** * slice : 数组->slice(截取) * 参数有两个,开始截取和结束截取,并返回原数组: * a.slice(1) || ...

  2. 软件开发工具GCC

    重点掌握以下知识点: 了解gcc编译器的下载和安装方法,包括嵌入式交叉编译平台搭建的方法 重点掌握gcc的基本编译流程和编译方法 重点掌握gcc编译的高级操作及选项 了解gcc编译器性能分析工具,包括 ...

  3. GCC高级测试功能扩展——程序性能测试工具gprof、程序覆盖测试工具gcov

    gprof是GNU组织下的一个比较有用的性能测试功能: 主要功能:   找出应用程序中消耗CPU时间最多的函数: 产生程序运行时的函数调用关系.调用次数 基本原理:   首先用户要使用gprof工具, ...

  4. request.getServletContext()

    servlect 3.0 支持,低版本不支持,报错的话看jar包的引用.

  5. Python 创建元组tuple

    创建tupletuple是另一种有序的列表,中文翻译为“ 元组 ”.tuple 和 list 非常类似,但是,tuple一旦创建完毕,就不能修改了.同样是表示班里同学的名称,用tuple表示如下:&g ...

  6. 获得客户端详细信息以及每个进程的sql语句

    db性能下降时很多朋友都想监控到是哪个客户端.哪个用户.哪台客户端发起的什么会话sql语句, 但是微软自带的要使用profiler才能实现,但是考虑性能问题,很多人不愿意! 网上有很多脚本能监控到客户 ...

  7. Sublime Text 包管理工具及扩展大全

    Sublime Text 是程序员们公认的编码神奇,拥有漂亮的用户界面和强大的功能,例如代码缩略图,多重选择,快捷命令等.还可自定义键绑定,菜单和工具栏.Sublime Text 的主要功能包括:拼写 ...

  8. 点滴的积累---初学Javascript

    在学习知识的路上,我们须要的不断的去接触新的知识,同一时候我们也不要不停地对自己旧的知识进行总结.近期通过<牛腩Javascript>和姜昊的<Javascript专题视频>对 ...

  9. django之整体复习

    1. 配置文件: media: avatar = models.FileField(upload_to='avatar') sessiongs MEDIA_ROOT=os.path.join(BASE ...

  10. Redis(十九):Redis压力测试工具benchmark

    redis-benchmark使用参数介绍 Redis 自带了一个叫 redis-benchmark 的工具来模拟 N 个客户端同时发出 M 个请求. (类似于 Apache ab 程序).你可以使用 ...