C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下:
1、分离信息
 
解释:数据集通过条件属性A的分离信息,其实和ID3中的熵;
 
2、信息增益率
 
解释:Gain(A)为获的A的信息增益,C4.5中选择具有最大增益率的属性作为分裂属性;
 
 
3、C4.5中所采用的悲观剪枝法
解释:数据的内容,还没有特别理解,之后补上。
 
 
相较ID3的改进:
1、用信息增益率来选择属性,克服了使用信息增益选择属性时偏向选择取值多的属性的不足;
2、在数构造过程中进行剪枝;
3、能够完成对连续属性的离散化处理;
4、能够对不完整数据进行处理;
 
优点:
产生的分类规则易于理解,准确率较高;
缺点:
在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大的无法在内存中容纳时程序无法运行;
 
 
相关内容:
决策树的过拟合问题:
      算法生成的决策树详细而庞大,很多错误数据数据也会被吸收和学习,成为决策树中的一部分,这些决策树的部分可能在训练数据中表现很好,但在以后的数据终究不会那么好,甚至错误率要高。
 
剪枝方法:先剪枝和后剪枝
      先剪枝方法中通过提前停止树的构造(比如决定在某个节点不在分裂或划分训练元组的子集)而对树剪枝。一旦停止,这个节点就变成输液,改树叶可能取它持有的子集最频繁的类作为自己的类。先剪枝有很多方法,比如:1、当决策树达到一定的高度就停止决策树的生长;2、到达此节点的实例具有相同的特征向量,而不必一定属于同一类,也可以停止生长;3、到达此节点的实例个数小于某个阈值的时候也可以厅直属的生长,不足之处是不能处理那些数据量比较小的特殊情况;4、计算每次扩展对系统性能的增益,如果小于某个阈值就可以让它停止生长。先剪枝有个缺点就是视野效果问题,也就是说在相同的标准下,也许当前扩展不能满足要求,但更进一步扩展又能满足要求。这样会过早停止决策树的生长。
     后剪枝方法由完全成长的树减去子树而形成。通过删除节点的分支并用树叶来替换它。树叶一般用子树中最频繁的类别来标记。剪枝过程是对拥有同样父节点的一组节点进行检查,判断如果将其合并,熵的增加量是否小于某一阈值。如果确实小,则合并为一个节点。
    后剪枝算法有很多种,Reduced-Error Pruning(REP,错误率降低剪枝)、Pessimistic Error Pruning(PEP,悲观剪枝);

决策树 -- C4.5算法的更多相关文章

  1. 02-22 决策树C4.5算法

    目录 决策树C4.5算法 一.决策树C4.5算法学习目标 二.决策树C4.5算法详解 2.1 连续特征值离散化 2.2 信息增益比 2.3 剪枝 2.4 特征值加权 三.决策树C4.5算法流程 3.1 ...

  2. 决策树-C4.5算法(三)

    在上述两篇的文章中主要讲述了决策树的基础,但是在实际的应用中经常用到C4.5算法,C4.5算法是以ID3算法为基础,他在ID3算法上做了如下的改进: 1) 用信息增益率来选择属性,克服了用信息增益选择 ...

  3. Python实现决策树C4.5算法

    为什么要改进成C4.5算法 原理 C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益. 之所以这样做是因为信息增益倾向于选 ...

  4. python实现决策树C4.5算法(在ID3基础上改进)

    一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作 ...

  5. 决策树C4.5算法——计算步骤示例

    使用决策树算法手动计算GOLF数据集 步骤: 1.通过信息增益率筛选分支. (1)共有4个自变量,分别计算每一个自变量的信息增益率. 首先计算outlook的信息增益.outlook的信息增益Gain ...

  6. 决策树(C4.5)原理

    决策树c4.5算法是在决策树ID3上面演变而来. 在ID3中: 信息增益 按属性A划分数据集S的信息增益Gain(S,A)为样本集S的熵减去按属性A划分S后的样本子集的熵,即 在此基础上,C4.5计算 ...

  7. 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)

    1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...

  8. 决策树之C4.5算法

    决策树之C4.5算法 一.C4.5算法概述 C4.5算法是最常用的决策树算法,因为它继承了ID3算法的所有优点并对ID3算法进行了改进和补充. 改进有如下几个要点: 用信息增益率来选择属性,克服了ID ...

  9. 机器学习之决策树(ID3 、C4.5算法)

    声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决 ...

随机推荐

  1. Activity启动模式

    ------siwuxie095 共4种启动模式:standard singleTop singleTask singleInstance 1.标准启动模式(standard) 也即默认的启动模式 ( ...

  2. vim--macro

    例: qa some vim command q 这个宏只记录了vim命令到寄存器a中,执行这个宏可以用命令: @a 也可以加上执行次数: 10@a 执行10次 当你执行过一次@a之后,你可以用 @@ ...

  3. XAF 14.1 DC 实现自定审计日志信息

    由于一个系统的需要,需要在日志中加入自定义的信息,并且需要根据需要过滤显示其中的部分操作记录入修改,删除等,其他的不显示,具体的实现方法如下: 一.需要继承 AuditDataItemPersiste ...

  4. 第一章 jQuery基础方法回顾

    jQuery即JavaScript,它是一个.js文件(官网下载).使用时须将jQuery库的声明写在HTML文档的head标签里. 章节内容: 1.选择DOM节点 2.延迟的JavaScript的执 ...

  5. IOS常见错误之一连线错误

    在IOS编程中,UI方面,对于新手,接触时,不免喜欢拖控件,觉得省去了一些麻烦,其实在操作控件的过程中也有很多问题需要注意 本人今天就说下遇到的一个问题. setValue:forUndefinedK ...

  6. 用jquery编写的tab插件

    用jquery编写的tab插件 源码 $.fn.ss_tab = function (options) { var box = $(this); var btns = $(this).find(&qu ...

  7. Linux下的虚拟Bridge实现

    http://www.cnblogs.com/zmkeil/archive/2013/04/21/3034733.html Linux下的Bridge也是一种虚拟设备,这多少和vlan有点相似,它依赖 ...

  8. Java初学随笔

    背景 狡兔三窟,在使用了近7-8年的C#后,考虑到云化的到来,还是要面向更多的语言与技术,近期决定学习scala,先从Java为跳板,最后达到学会并熟练 使用scala的目的. <核心技术> ...

  9. SDN三种模型解析

    数十年前,计算机科学家兼网络作家Andrew S. Tanenbaum讽刺标准过多难以选择,当然现在也是如此,比如软件定义网络模型的数量也很多.但是在考虑部署软件定义网络(SDN)或者试点之前,首先需 ...

  10. Cassandra-几个基本测试常识

    一 使用ycsb进行装载,每次装载都不会删除以前装载过的. 因此如果想在空数据库中装载,需要先情况数据表. drop命令删除整个表,因此需要重建标头. truncate命令删除表的所有行,只留下表头, ...