这是一个连连看小游戏,以 Unity2D 开发。因用了数种水果图片来做头像,所以游戏取名 FruitFrolic。同样,它也只是我闲时的练手。

少时曾玩过掌上游戏机里的俄罗斯方块及打飞机,及手机上的推箱子等,也在 Dos 上玩过几乎人人皆知的超级玛丽。我很想在闲暇的时候自己来实现它们,但为兴趣和乐趣而已。所以有前文所述的 PetGenie,以及本文,和之后可能的自实现版俄罗斯方块。不过限于美术素材及个人精力等之因,它们应会实现得比较简陋,虽然游戏核心逻辑几都具备。

而我所使用的所有美术素材及音频等都来源于网络,本着开放的原则,我的(所有)自实现小游戏也都开源,且没有任何版权等限制。

连连看的核心显然在洗牌及连线分析算法。洗牌控制了游戏的难易,变化很多。但我这里只是简单地平均生成了头像并随机打乱,而在连线分析算法里使用了广度优先搜索。

洗牌代码如下。

void RandomGenies() {
int idx;
// 共 6 * 8 个格子、12 种水果 --> 每种水果生成 4 次
int[] geniesCounter = new int[cSpriteTypeCount] {, , , , , , , , , , , };
for (int i = ; i < cGridRows; i++) {
for (int j = ; j < cGridCols; j++) {
genies[i, j].x = i;
genies[i, j].y = j;
while (true) {
idx = (int)(Random.value * cSpriteTypeCount);
if (geniesCounter[idx] > ) {
break;
}
}
geniesCounter[idx]--;
genies[i, j].index = idx;
genies[i, j].spriteRenderer.sprite = fruitSprites[idx];
}
}
}

而连线分析实现代码如下。

void DetectLink() {
if (!ValidPrecondition()) {
return;
} List<TGenie> contnr0 = new List<TGenie>();
FindCells((int)(touchCoords.pos1.x), (int)(touchCoords.pos1.y), contnr0);
if (CellExists(genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)], contnr0)) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
} List<TGenie> contnr1 = new List<TGenie>();
PrepareContnr(contnr0, contnr1);
ShrinkContnr(contnr0, contnr1);
if (CellExists(genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)], contnr1)) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
} List<TGenie> contnr2 = new List<TGenie>();
PrepareContnr(contnr1, contnr2);
ShrinkContnr(contnr0, contnr2);
ShrinkContnr(contnr1, contnr2);
if (CellExists(genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)], contnr2)) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
} DetectSpecialLink();
} bool ValidPrecondition() {
if ((touchCoords.pos1.x == cInvalidCoordValue) || (touchCoords.pos1.y == cInvalidCoordValue) || (touchCoords.pos2.x == cInvalidCoordValue) || (touchCoords.pos2.y == cInvalidCoordValue)) {
return false;
} if ((touchCoords.pos1.x == touchCoords.pos2.x) && (touchCoords.pos1.y == touchCoords.pos2.y)) {
return false;
} if (genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index != genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index) {
return false;
} return true;
} void FindCells(int x, int y, List<TGenie> contnr) {
int n = ;
n = y - ;
if (n >= ) {
if (!(contnr.Contains(genies[n, x]))) {
contnr.Add(genies[n, x]);
}
}
while ((n >= ) && (genies[n, x].index == cInvalidCoordValue)) {
n--;
if ((n >= ) && (!(contnr.Contains(genies[n, x])))) {
contnr.Add(genies[n, x]);
}
} n = y + ;
if (n < cGridRows) {
if (!(contnr.Contains(genies[n, x]))) {
contnr.Add(genies[n, x]);
}
}
while ((n < cGridRows) && (genies[n, x].index == cInvalidCoordValue)) {
n++;
if ((n < cGridRows) && (!(contnr.Contains(genies[n, x])))) {
contnr.Add(genies[n, x]);
}
} n = x - ;
if (n >= ) {
if (!(contnr.Contains(genies[y, n]))) {
contnr.Add(genies[y, n]);
}
}
while ((n >= ) && (genies[y, n].index == cInvalidCoordValue)) {
n--;
if ((n >= ) && (!(contnr.Contains(genies[y, n])))) {
contnr.Add(genies[y, n]);
}
} n = x + ;
if (n < cGridCols) {
if (!(contnr.Contains(genies[y, n]))) {
contnr.Add(genies[y, n]);
}
}
while ((n < cGridCols) && (genies[y, n].index == cInvalidCoordValue)) {
n++;
if ((n < cGridCols) && (!(contnr.Contains(genies[y, n])))) {
contnr.Add(genies[y, n]);
}
}
} bool CellExists(TGenie genie, List<TGenie> contnr) {
foreach (TGenie g in contnr) {
if (g.Equals(genie)) {
return true;
}
} return false;
} void PrepareContnr(List<TGenie> contnrSrc, List<TGenie> contnrDest) {
foreach (TGenie g in contnrSrc) {
if (g.index == cInvalidCoordValue) {
FindCells(g.y, g.x, contnrDest);
}
}
} void ShrinkContnr(List<TGenie> contnrSrc, List<TGenie> contnrDest) {
foreach (TGenie g in contnrSrc) {
if (contnrDest.Contains(g)) {
contnrDest.Remove(g);
}
}
} void DetectSpecialLink() {
// 若在第一或最末列
if (touchCoords.pos1.x == touchCoords.pos2.x) {
if ((touchCoords.pos1.x == ) || (touchCoords.pos1.x == cGridCols - )) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
}
} // 若在第一或最末行
if (touchCoords.pos1.y == touchCoords.pos2.y) {
if ((touchCoords.pos1.y == ) || (touchCoords.pos1.y == cGridRows - )) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
}
}
}

判断是否已连线完毕(已全部消除或已死锁)的代码如下。

bool HasMatches() {
// 检测上下左右第一行/列是否有可消除的格子(特殊处理)
for (int i = ; i < cGridCols - ; i++) {
if (genies[, i].index != cInvalidCoordValue) {
for (int j = i + ; j < cGridCols; j++) {
if (genies[, i].index == genies[, j].index) {
return true;
}
}
} if (genies[cGridRows - , i].index != cInvalidCoordValue) {
for (int j = i + ; j < cGridCols; j++) {
if (genies[cGridRows - , i].index == genies[cGridRows - , j].index) {
return true;
}
}
}
} for (int i = ; i < cGridRows - ; i++) {
if (genies[i, ].index != cInvalidCoordValue) {
for (int j = i + ; j < cGridRows; j++) {
if (genies[i, ].index == genies[j, ].index) {
return true;
}
}
} if (genies[i, cGridCols - ].index != cInvalidCoordValue) {
for (int j = i + ; j < cGridRows; j++) {
if (genies[i, cGridCols - ].index == genies[j, cGridCols - ].index) {
return true;
}
}
}
} for (int i = ; i < cGridRows; i++) {
for (int j = ; j < cGridCols; j++) {
if (genies[i, j].index != cInvalidCoordValue) {
// 0 转弯
List<TGenie> contnr0 = new List<TGenie>();
FindCells(j, i, contnr0);
if (HasMatchableGenie(genies[i, j], contnr0)) {
return true;
} // 1 转弯
List<TGenie> contnr1 = new List<TGenie>();
PrepareContnr(contnr0, contnr1);
ShrinkContnr(contnr0, contnr1);
if (HasMatchableGenie(genies[i, j], contnr1)) {
return true;
} // 2 转弯
List<TGenie> contnr2 = new List<TGenie>();
PrepareContnr(contnr1, contnr2);
ShrinkContnr(contnr0, contnr2);
ShrinkContnr(contnr1, contnr2);
RemoveNullGenies(contnr2);
if (HasMatchableGenie(genies[i, j], contnr2)) {
return true;
}
}
}
} return false;
} bool HasMatchableGenie(TGenie genie, List<TGenie> contnr) {
foreach (TGenie g in contnr) {
if ((!g.Equals(genie)) && (g.index == genie.index)) {
return true;
}
} return false;
} void RemoveNullGenies(List<TGenie> contnr) {
List<TGenie> tmp = new List<TGenie>();
foreach (TGenie g in contnr) {
if (g.index == cInvalidCoordValue) {
tmp.Add(g);
}
} foreach (TGenie g in tmp) {
contnr.Remove(g);
}
}

其实我本想分析每一种可能的连线情况(0---2 个转弯),但在写完 0 和 1 个转弯分析之后不想再写 2 个转弯分析代码了,因它们确实不好理解(也不好维护)。

// 0 个转角连通
bool CheckLink0() {
// 若在同一列格子
if (touchCoords.pos1.x == touchCoords.pos2.x) {
if ((touchCoords.pos1.x != ) && (touchCoords.pos1.x != cGridCols - )) {
if (touchCoords.pos1.y < touchCoords.pos2.y) {
for (int i = (int)(touchCoords.pos1.y) + ; i < ((int)(touchCoords.pos2.y)); i++) {
if (genies[i, (int)(touchCoords.pos1.x)].index != cInvalidCoordValue) {
return false;
}
}
} else {
for (int i = (int)(touchCoords.pos2.y) + ; i < ((int)(touchCoords.pos1.y)); i++) {
if (genies[i, (int)(touchCoords.pos1.x)].index != cInvalidCoordValue) {
return false;
}
}
}
} genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue; return true;
} // 若在同一行格子
if (touchCoords.pos1.y == touchCoords.pos2.y) {
if ((touchCoords.pos1.y != ) && (touchCoords.pos1.y != cGridRows - )) {
if (touchCoords.pos1.x < touchCoords.pos2.x) {
for (int i = (int)(touchCoords.pos1.x) + ; i < ((int)(touchCoords.pos2.x)); i++) {
if (genies[(int)(touchCoords.pos1.y), i].index != cInvalidCoordValue) {
return false;
}
}
} else {
for (int i = (int)(touchCoords.pos2.x) + ; i < ((int)(touchCoords.pos1.x)); i++) {
if (genies[(int)(touchCoords.pos1.y), i].index != cInvalidCoordValue) {
return false;
}
}
}
} genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue; return true;
} return false;
} // 1 个转角连通 --> 相当于两个格子划出一个矩形, 这两个格子是一对对角顶点, 另两个顶点如果可以同时和这两个格子直连, 那就说明可以连通
bool CheckLink1() {
int l = cInvalidCoordValue, t = cInvalidCoordValue, r = cInvalidCoordValue, b = cInvalidCoordValue;
if (touchCoords.pos1.y < touchCoords.pos2.y) {
t = (int)(touchCoords.pos1.y);
b = (int)(touchCoords.pos2.y);
} else {
t = (int)(touchCoords.pos2.y);
b = (int)(touchCoords.pos1.y);
}
if (touchCoords.pos1.x < touchCoords.pos2.x) {
l = (int)(touchCoords.pos1.x);
r = (int)(touchCoords.pos2.x);
} else {
l = (int)(touchCoords.pos2.x);
r = (int)(touchCoords.pos1.x);
} if (genies[t, l].index == cInvalidCoordValue) { // 若选取的两个格子在 右上、左下
for (int i = t + ; i < b; i++) {
if (genies[i, l].index != cInvalidCoordValue) {
return false;
}
} for (int j = l + ; j < r; j++) {
if (genies[t, j].index != cInvalidCoordValue) {
return false;
}
} genies[t, r].index = cInvalidCoordValue;
genies[b, l].index = cInvalidCoordValue; return true;
} else if (genies[t, r].index == cInvalidCoordValue) { // 若选取的两个格子在 左上、右下
for (int i = t + ; i < b; i++) {
if (genies[i, r].index != cInvalidCoordValue) {
return false;
}
} for (int j = l + ; j < r; j++) {
if (genies[t, j].index != cInvalidCoordValue) {
return false;
}
} genies[t, l].index = cInvalidCoordValue;
genies[b, r].index = cInvalidCoordValue; return true;
} else if (genies[b, l].index == cInvalidCoordValue) { // 若选取的两个格子在 左上、右下
for (int i = t + ; i < b; i++) {
if (genies[i, r].index != cInvalidCoordValue) {
return false;
}
} for (int j = l + ; j < r; j++) {
if (genies[b, j].index != cInvalidCoordValue) {
return false;
}
} genies[t, l].index = cInvalidCoordValue;
genies[b, r].index = cInvalidCoordValue; return true;
} else if (genies[b, r].index == cInvalidCoordValue) { // 若选取的两个格子在 右上、左下
for (int i = t + ; i < b; i++) {
if (genies[i, l].index != cInvalidCoordValue) {
return false;
}
} for (int j = l + ; j < r; j++) {
if (genies[b, j].index != cInvalidCoordValue) {
return false;
}
} genies[t, r].index = cInvalidCoordValue;
genies[b, l].index = cInvalidCoordValue; return true;
} return false;
}

游戏真机运行截图如下。

代码下载链接在这里

FruitFrolic的更多相关文章

随机推荐

  1. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  2. box2d最大速度限制

    被坑了好几个小时... 原来box2d中限制了最大速度为2m/frame. 参考http://badlogicgames.com/forum/viewtopic.php?f=11&t=6137 ...

  3. oracle 解锁

    解决方法如下: 1:查V$DB_OBJECT_CACHE SELECT * FROM V$DB_OBJECT_CACHE WHERE name='CRM_LASTCHGINFO_DAY' AND LO ...

  4. NSMutableRLEArray objectAtIndex:effectiveRange:: Out of bounds

     Bugly:  Trapped uncaught exception 'NSRangeException', reason: 'NSMutableRLEArray objectAtIndex:eff ...

  5. jqurey datatable tableTools 自定义button元素 以及按钮自事件

    版本 1.10.4 "dom": 'T<"clear">lfrtip', "tableTools": { //"sSw ...

  6. visio取消自动粘附

    有时候画直线的时候需要直线摆在任意位置,这个时候自动粘附就很碍事了,总是自动把你的直线给摆到粘附的特殊位置上 如何取消: 视图->视觉帮助(点右下角的小箭头)->当前活动的->取消勾 ...

  7. My Baits入门(一)mybaits环境搭建

    1)在工程下引入mybatis-3.4.1.jar包,再引入数据库(mysql,mssql..)包. 2)在src下新建一个配置文件conf.xml <?xml version="1. ...

  8. Transaction Save Point (SET XACT_ABORT { ON | OFF })

    ref:http://blog.csdn.net/wym3587/article/details/6940630 ref:http://www.cnblogs.com/jiajiayuan/archi ...

  9. LCD接口(转载)

    LCD接口分类 1.   I8080接口,我觉得应该就是所谓的8080,通常会用在12864屏上面,且有内部sdram,不需要实时的刷新图片,速度有限制, 支持的数据宽度有8/9/16/18bit,接 ...

  10. c#-快速排序-算法

    快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists). 步骤为: 1.从数列中挑出一个元素,称为 "基准"(p ...