这是一个连连看小游戏,以 Unity2D 开发。因用了数种水果图片来做头像,所以游戏取名 FruitFrolic。同样,它也只是我闲时的练手。

少时曾玩过掌上游戏机里的俄罗斯方块及打飞机,及手机上的推箱子等,也在 Dos 上玩过几乎人人皆知的超级玛丽。我很想在闲暇的时候自己来实现它们,但为兴趣和乐趣而已。所以有前文所述的 PetGenie,以及本文,和之后可能的自实现版俄罗斯方块。不过限于美术素材及个人精力等之因,它们应会实现得比较简陋,虽然游戏核心逻辑几都具备。

而我所使用的所有美术素材及音频等都来源于网络,本着开放的原则,我的(所有)自实现小游戏也都开源,且没有任何版权等限制。

连连看的核心显然在洗牌及连线分析算法。洗牌控制了游戏的难易,变化很多。但我这里只是简单地平均生成了头像并随机打乱,而在连线分析算法里使用了广度优先搜索。

洗牌代码如下。

void RandomGenies() {
int idx;
// 共 6 * 8 个格子、12 种水果 --> 每种水果生成 4 次
int[] geniesCounter = new int[cSpriteTypeCount] {, , , , , , , , , , , };
for (int i = ; i < cGridRows; i++) {
for (int j = ; j < cGridCols; j++) {
genies[i, j].x = i;
genies[i, j].y = j;
while (true) {
idx = (int)(Random.value * cSpriteTypeCount);
if (geniesCounter[idx] > ) {
break;
}
}
geniesCounter[idx]--;
genies[i, j].index = idx;
genies[i, j].spriteRenderer.sprite = fruitSprites[idx];
}
}
}

而连线分析实现代码如下。

void DetectLink() {
if (!ValidPrecondition()) {
return;
} List<TGenie> contnr0 = new List<TGenie>();
FindCells((int)(touchCoords.pos1.x), (int)(touchCoords.pos1.y), contnr0);
if (CellExists(genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)], contnr0)) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
} List<TGenie> contnr1 = new List<TGenie>();
PrepareContnr(contnr0, contnr1);
ShrinkContnr(contnr0, contnr1);
if (CellExists(genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)], contnr1)) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
} List<TGenie> contnr2 = new List<TGenie>();
PrepareContnr(contnr1, contnr2);
ShrinkContnr(contnr0, contnr2);
ShrinkContnr(contnr1, contnr2);
if (CellExists(genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)], contnr2)) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
} DetectSpecialLink();
} bool ValidPrecondition() {
if ((touchCoords.pos1.x == cInvalidCoordValue) || (touchCoords.pos1.y == cInvalidCoordValue) || (touchCoords.pos2.x == cInvalidCoordValue) || (touchCoords.pos2.y == cInvalidCoordValue)) {
return false;
} if ((touchCoords.pos1.x == touchCoords.pos2.x) && (touchCoords.pos1.y == touchCoords.pos2.y)) {
return false;
} if (genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index != genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index) {
return false;
} return true;
} void FindCells(int x, int y, List<TGenie> contnr) {
int n = ;
n = y - ;
if (n >= ) {
if (!(contnr.Contains(genies[n, x]))) {
contnr.Add(genies[n, x]);
}
}
while ((n >= ) && (genies[n, x].index == cInvalidCoordValue)) {
n--;
if ((n >= ) && (!(contnr.Contains(genies[n, x])))) {
contnr.Add(genies[n, x]);
}
} n = y + ;
if (n < cGridRows) {
if (!(contnr.Contains(genies[n, x]))) {
contnr.Add(genies[n, x]);
}
}
while ((n < cGridRows) && (genies[n, x].index == cInvalidCoordValue)) {
n++;
if ((n < cGridRows) && (!(contnr.Contains(genies[n, x])))) {
contnr.Add(genies[n, x]);
}
} n = x - ;
if (n >= ) {
if (!(contnr.Contains(genies[y, n]))) {
contnr.Add(genies[y, n]);
}
}
while ((n >= ) && (genies[y, n].index == cInvalidCoordValue)) {
n--;
if ((n >= ) && (!(contnr.Contains(genies[y, n])))) {
contnr.Add(genies[y, n]);
}
} n = x + ;
if (n < cGridCols) {
if (!(contnr.Contains(genies[y, n]))) {
contnr.Add(genies[y, n]);
}
}
while ((n < cGridCols) && (genies[y, n].index == cInvalidCoordValue)) {
n++;
if ((n < cGridCols) && (!(contnr.Contains(genies[y, n])))) {
contnr.Add(genies[y, n]);
}
}
} bool CellExists(TGenie genie, List<TGenie> contnr) {
foreach (TGenie g in contnr) {
if (g.Equals(genie)) {
return true;
}
} return false;
} void PrepareContnr(List<TGenie> contnrSrc, List<TGenie> contnrDest) {
foreach (TGenie g in contnrSrc) {
if (g.index == cInvalidCoordValue) {
FindCells(g.y, g.x, contnrDest);
}
}
} void ShrinkContnr(List<TGenie> contnrSrc, List<TGenie> contnrDest) {
foreach (TGenie g in contnrSrc) {
if (contnrDest.Contains(g)) {
contnrDest.Remove(g);
}
}
} void DetectSpecialLink() {
// 若在第一或最末列
if (touchCoords.pos1.x == touchCoords.pos2.x) {
if ((touchCoords.pos1.x == ) || (touchCoords.pos1.x == cGridCols - )) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
}
} // 若在第一或最末行
if (touchCoords.pos1.y == touchCoords.pos2.y) {
if ((touchCoords.pos1.y == ) || (touchCoords.pos1.y == cGridRows - )) {
genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue;
return;
}
}
}

判断是否已连线完毕(已全部消除或已死锁)的代码如下。

bool HasMatches() {
// 检测上下左右第一行/列是否有可消除的格子(特殊处理)
for (int i = ; i < cGridCols - ; i++) {
if (genies[, i].index != cInvalidCoordValue) {
for (int j = i + ; j < cGridCols; j++) {
if (genies[, i].index == genies[, j].index) {
return true;
}
}
} if (genies[cGridRows - , i].index != cInvalidCoordValue) {
for (int j = i + ; j < cGridCols; j++) {
if (genies[cGridRows - , i].index == genies[cGridRows - , j].index) {
return true;
}
}
}
} for (int i = ; i < cGridRows - ; i++) {
if (genies[i, ].index != cInvalidCoordValue) {
for (int j = i + ; j < cGridRows; j++) {
if (genies[i, ].index == genies[j, ].index) {
return true;
}
}
} if (genies[i, cGridCols - ].index != cInvalidCoordValue) {
for (int j = i + ; j < cGridRows; j++) {
if (genies[i, cGridCols - ].index == genies[j, cGridCols - ].index) {
return true;
}
}
}
} for (int i = ; i < cGridRows; i++) {
for (int j = ; j < cGridCols; j++) {
if (genies[i, j].index != cInvalidCoordValue) {
// 0 转弯
List<TGenie> contnr0 = new List<TGenie>();
FindCells(j, i, contnr0);
if (HasMatchableGenie(genies[i, j], contnr0)) {
return true;
} // 1 转弯
List<TGenie> contnr1 = new List<TGenie>();
PrepareContnr(contnr0, contnr1);
ShrinkContnr(contnr0, contnr1);
if (HasMatchableGenie(genies[i, j], contnr1)) {
return true;
} // 2 转弯
List<TGenie> contnr2 = new List<TGenie>();
PrepareContnr(contnr1, contnr2);
ShrinkContnr(contnr0, contnr2);
ShrinkContnr(contnr1, contnr2);
RemoveNullGenies(contnr2);
if (HasMatchableGenie(genies[i, j], contnr2)) {
return true;
}
}
}
} return false;
} bool HasMatchableGenie(TGenie genie, List<TGenie> contnr) {
foreach (TGenie g in contnr) {
if ((!g.Equals(genie)) && (g.index == genie.index)) {
return true;
}
} return false;
} void RemoveNullGenies(List<TGenie> contnr) {
List<TGenie> tmp = new List<TGenie>();
foreach (TGenie g in contnr) {
if (g.index == cInvalidCoordValue) {
tmp.Add(g);
}
} foreach (TGenie g in tmp) {
contnr.Remove(g);
}
}

其实我本想分析每一种可能的连线情况(0---2 个转弯),但在写完 0 和 1 个转弯分析之后不想再写 2 个转弯分析代码了,因它们确实不好理解(也不好维护)。

// 0 个转角连通
bool CheckLink0() {
// 若在同一列格子
if (touchCoords.pos1.x == touchCoords.pos2.x) {
if ((touchCoords.pos1.x != ) && (touchCoords.pos1.x != cGridCols - )) {
if (touchCoords.pos1.y < touchCoords.pos2.y) {
for (int i = (int)(touchCoords.pos1.y) + ; i < ((int)(touchCoords.pos2.y)); i++) {
if (genies[i, (int)(touchCoords.pos1.x)].index != cInvalidCoordValue) {
return false;
}
}
} else {
for (int i = (int)(touchCoords.pos2.y) + ; i < ((int)(touchCoords.pos1.y)); i++) {
if (genies[i, (int)(touchCoords.pos1.x)].index != cInvalidCoordValue) {
return false;
}
}
}
} genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue; return true;
} // 若在同一行格子
if (touchCoords.pos1.y == touchCoords.pos2.y) {
if ((touchCoords.pos1.y != ) && (touchCoords.pos1.y != cGridRows - )) {
if (touchCoords.pos1.x < touchCoords.pos2.x) {
for (int i = (int)(touchCoords.pos1.x) + ; i < ((int)(touchCoords.pos2.x)); i++) {
if (genies[(int)(touchCoords.pos1.y), i].index != cInvalidCoordValue) {
return false;
}
}
} else {
for (int i = (int)(touchCoords.pos2.x) + ; i < ((int)(touchCoords.pos1.x)); i++) {
if (genies[(int)(touchCoords.pos1.y), i].index != cInvalidCoordValue) {
return false;
}
}
}
} genies[(int)(touchCoords.pos1.y), (int)(touchCoords.pos1.x)].index = cInvalidCoordValue;
genies[(int)(touchCoords.pos2.y), (int)(touchCoords.pos2.x)].index = cInvalidCoordValue; return true;
} return false;
} // 1 个转角连通 --> 相当于两个格子划出一个矩形, 这两个格子是一对对角顶点, 另两个顶点如果可以同时和这两个格子直连, 那就说明可以连通
bool CheckLink1() {
int l = cInvalidCoordValue, t = cInvalidCoordValue, r = cInvalidCoordValue, b = cInvalidCoordValue;
if (touchCoords.pos1.y < touchCoords.pos2.y) {
t = (int)(touchCoords.pos1.y);
b = (int)(touchCoords.pos2.y);
} else {
t = (int)(touchCoords.pos2.y);
b = (int)(touchCoords.pos1.y);
}
if (touchCoords.pos1.x < touchCoords.pos2.x) {
l = (int)(touchCoords.pos1.x);
r = (int)(touchCoords.pos2.x);
} else {
l = (int)(touchCoords.pos2.x);
r = (int)(touchCoords.pos1.x);
} if (genies[t, l].index == cInvalidCoordValue) { // 若选取的两个格子在 右上、左下
for (int i = t + ; i < b; i++) {
if (genies[i, l].index != cInvalidCoordValue) {
return false;
}
} for (int j = l + ; j < r; j++) {
if (genies[t, j].index != cInvalidCoordValue) {
return false;
}
} genies[t, r].index = cInvalidCoordValue;
genies[b, l].index = cInvalidCoordValue; return true;
} else if (genies[t, r].index == cInvalidCoordValue) { // 若选取的两个格子在 左上、右下
for (int i = t + ; i < b; i++) {
if (genies[i, r].index != cInvalidCoordValue) {
return false;
}
} for (int j = l + ; j < r; j++) {
if (genies[t, j].index != cInvalidCoordValue) {
return false;
}
} genies[t, l].index = cInvalidCoordValue;
genies[b, r].index = cInvalidCoordValue; return true;
} else if (genies[b, l].index == cInvalidCoordValue) { // 若选取的两个格子在 左上、右下
for (int i = t + ; i < b; i++) {
if (genies[i, r].index != cInvalidCoordValue) {
return false;
}
} for (int j = l + ; j < r; j++) {
if (genies[b, j].index != cInvalidCoordValue) {
return false;
}
} genies[t, l].index = cInvalidCoordValue;
genies[b, r].index = cInvalidCoordValue; return true;
} else if (genies[b, r].index == cInvalidCoordValue) { // 若选取的两个格子在 右上、左下
for (int i = t + ; i < b; i++) {
if (genies[i, l].index != cInvalidCoordValue) {
return false;
}
} for (int j = l + ; j < r; j++) {
if (genies[b, j].index != cInvalidCoordValue) {
return false;
}
} genies[t, r].index = cInvalidCoordValue;
genies[b, l].index = cInvalidCoordValue; return true;
} return false;
}

游戏真机运行截图如下。

代码下载链接在这里

FruitFrolic的更多相关文章

随机推荐

  1. 【Html 学习笔记】第二节——文本格式

    上一节基本已经了解了一些html的基础,这一节主要学习html处理文本相关内容,直接看内容吧. 字体: 预格式文本:<pre> 地址:<address> 缩写:<abbr ...

  2. 【原】使用Xfermode正确的绘制出遮罩效果

    以前写as3的时候,遮罩效果一个mask属性就搞定了,真是方便. 转到android上以后,发现要实现类似的效果,可以使用Xfermode,android一共提供了三种: AvoidXfermode; ...

  3. java编程思想 一切都是对象

    java是一种面向对象程序设计语言,一切都是对象,并且用引用操作对象,如一个电视机就是一个对象,而操作电视机的遥控器就是引用,引用可以单独存在,如遥控器可以单独存在. String s; 这里只是创建 ...

  4. JqGrid自定义的列

    $("#gridTable").jqGrid({ //...其它属性 colModel: [ //...其它列 { name: 'dsource_alarm', index: 'd ...

  5. rplidar & hector slam without odometry

    接上一篇:1.rplidar测试 方式一:测试使用rplidar A2跑一下手持的hector slam,参考文章:用hector mapping构建地图 但是roslaunch exbotxi_br ...

  6. css响应式布局RWD

    响应式布局结合了三大理念: 1)用于布局的弹性网络(百分比定义宽度) 2)用于图片和视频的弹性媒体 3)媒体查询 在布局中,需要注意的点有: 1)尽量用min-width/max-width,max- ...

  7. CentOS6.6安装及配置vsftpd文件服务器

    1.安装vsftpd和db4-utils,后者用来生成密码库文件,命令如下: # yum install -y vsftpd db4* 2.修改SELINUX,命令如下: # vim /etc/sys ...

  8. 使用Charles检测HTTPS网站的数据包

    1.下载Charles 下载地址:https://www.charlesproxy.com/download/ 2.安装Charles的证书 选择Help->SSL Proxying->I ...

  9. (转)HTTP 长连接和短连接

    1. HTTP协议与TCP/IP协议的关系 HTTP的长连接和短连接本质上是TCP长连接和短连接.HTTP属于应用层协议,在传输层使用TCP协议,在网络层使用IP协议.IP协议主要解决网络路由和寻址问 ...

  10. HandlerMapping的3种访问形式

    1.根据BeanName访问Controller 2.根据简单URL访问 3.根据Controller类名访问