参考与前言

Summary: 浩哥推荐的一篇 无人机下的建图 and planning实验

Type: ICRA

Year: 2021

论文链接:https://arxiv.org/abs/2105.04419

youtube presentation video:https://youtu.be/Bojh6ylYUOo

代码链接:https://github.com/zhudelong/VDB-EDT

1. Motivation

Eucliden distance transform EDT 对于机器人运动规划是很重要的,但是生成EDT 是比较费时的一件事,同时需要时刻更新并维护这样一个地图,本篇文章主要 通过优化数据结构和distance transform的过程来提升EDT算法的速度

在本文中,我们采用了树结构进行 hashing-based EDTs,主要是在做规划时发现 最优轨迹其实值需要考虑一定范围的障碍物, full distance information其实对于规划来说是冗余的,所以实际free部分都是一个值。These regions can then be efficiently encoded by a few number of tree nodes. Such a property is called spatial coherency, which can help further reduce memory consumption.

Benefiting from the fast index and caching systems, VDB achieves a much faster random access speed than Octree and also exhibits a competitive performance with the voxel hashing.

Contribution

  • the first time introduce the VDB data structure for distance field representation, which significantly reduces the memory consumption of EDT.
  • we propose a novel algorithm to facilitate distance transform procedure and significantly improve the running speed of conventional EDT algorithms.

2. Method

首先是问题定义,一个典型的distance transform问题 可以表达为如下公式:

\[\begin{array}{ll}d\left(x_i\right)=\min _{x_j} f\left(x_i, x_j\right), \\\text { s.t. } \quad x_i \in \mathcal{M}_f, x_j \in \mathcal{M}_o\end{array}
\]

其中,Mf是指free space,Mo是被占据空间,x为在grid map M中的坐标,目标函数f表示xi到xj之间的距离,目标是搜索对于每个xi都找其最近的xj作为距离

随后问题有了d(x) 后 我们就走到了 要找到一条安全的路径,则问题可表述为如下:

\[\begin{array}{ll}\min _{x_{0: N}} & \sum_{i=0}^N \alpha\left\|x_{i+1}-x_i\right\|+(1-\alpha) \max \left(0, d_{\max }-d\left(x_i\right)\right) \\\text { s.t. } & x_i, x_{i+1} \in \mathcal{M}_f \\& x_0=x_s, x_N=x_f \\& g\left(x_i, x_{i-1}, x_{i+1}\right)<\theta\end{array}
\]

其中,dmax是最大的transform distance,xs起点,xf终点,alpha为balance coefficient,g<theta主要是限制两个连续点之间产生较大的角度,平滑轨迹用的。目标函数中 前者为路径长度的cost,后者为避障的cost

2.1 数据结构

主要是介绍了VDB结构,由Museth[25] 提出的。It sufficiently exploits the sparsity of volumetric data, and employs a variant of B+ tree [32] to represent the data hierarchically.

下图是1D结构下的VDB,其和B+的几个特性是一致的,root node为索引,由hashmap建立,下面为internal node 和 leaf node保存了数据。也有本质上的不同:

it encodes values in internal nodes, called tile value. The tile value and child pointer exclusively use the same memory unit, and a flag is additionally leveraged to identify the different cases. A tile value only takes up tens of bits memory but can represent a large area in the distance field, which is the key feature leveraged to improve memory efficiency.

B+是一种平衡tree,在数据库中常用,主要原因是对于树结构的查询,程序加载子节点都需要进行一次磁盘IO,磁盘IO 比 读内存IO要慢 所以多叉的B+ tree可以减少I/O的次数

参考:b站视频 “索引”的原理 4min 建议感兴趣的可以再查询进阶数据结构书籍了解 实际上代码是直接openvdb库直接构建的

  • VDB: the branching factors are very large and variable, making the tree shallow and wide
  • Octree-based: deep and narrow, thus not fast enough for distance transform.

2.2 VDB-EDT

感觉这个看文中会比较好 主要是针对伪代码的解释

The distance field represented by VDB is essentially a sparse volumetric grid, and each field point is represented by a grid cell s indexed by a 3-D coordinate.

更新部分code:

void VDBMap::update_occmap(FloatGrid::Ptr grid_map, const tf::Vector3 &origin, XYZCloud::Ptr xyz)
{
auto grid_acc = grid_map->getAccessor();
auto tfm = grid_map->transform(); openvdb::Vec3d origin3d(origin.x(), origin.y(), origin.z());
openvdb::Vec3d origin_ijk = grid_map->worldToIndex(origin3d); for (auto point = xyz->begin(); point != xyz->end(); ++point) {
openvdb::Vec3d p_xyz(point->x, point->y, point->z);
openvdb::Vec3d p_ijk = grid_map->worldToIndex(p_xyz);
openvdb::Vec3d dir(p_ijk - origin_ijk);
double range = dir.length();
dir.normalize(); // Note: real sensor range should stractly larger than sensor_range
bool truncated = false;
openvdb::math::Ray<double> ray(origin_ijk, dir);
// openvdb::math::DDA<openvdb::math::Ray<double>, 0> dda(ray, 0., std::min(SENSOR_RANGE, range)); // if (START_RANGE >= std::min(SENSOR_RANGE, range)){
// continue;
// }
openvdb::math::DDA<openvdb::math::Ray<double>, 0> dda(ray, 0, std::min(SENSOR_RANGE, range)); // decrease occupancy
do {
openvdb::Coord ijk(dda.voxel()); float ll_old;
bool isKnown = grid_acc.probeValue(ijk, ll_old);
float ll_new = std::max(L_MIN, ll_old+L_FREE); if(!isKnown){
grid_distance_->dist_acc_->setValueOn(ijk);
} // unknown -> free -> EDT initialize else if(ll_old >= 0 && ll_new < 0){
grid_distance_->removeObstacle(ijk);
} // occupied -> free -> EDT RemoveObstacle grid_acc.setValueOn(ijk, ll_new);
dda.step(); } while (dda.time() < dda.maxTime()); // increase occupancy
if ((!truncated) && (range <= SENSOR_RANGE)){
for (int i=0; i < HIT_THICKNESS; ++i) {
openvdb::Coord ijk(dda.voxel()); float ll_old;
bool isKnown = grid_acc.probeValue(ijk, ll_old);
float ll_new = std::min(L_MAX, ll_old+L_OCCU); if(!isKnown){
grid_distance_->dist_acc_->setValueOn(ijk);
} // unknown -> occupied -> EDT SetObstacle
else if(ll_old < 0 && ll_new >= 0){
grid_distance_->setObstacle(ijk);
} // free -> occupied -> EDT SetObstacle grid_acc.setValueOn(ijk, ll_new);
dda.step();
}
} // process obstacle } // end inserting /* commit changes to the open queue*/
}

3. 实验及结果

各个阈值对时间的影响,其中对比了几个baseline方法如下:

  • A commonly-used general EDT [18] (denoted without -Ex suffix)
  • the proposed algorithm (denoted with -Ex suffix).
  • Two implementations based on the array and VDB data structures to compare their memory efficiency (denoted with Arr- and VDB- prefix, respectively)

可以看到 在时间上-Ex 的耗时都比无Ex的快,虽然VDB的速度上比arr的还是慢了一点 10%-25%,但是从memeory cost上确实节约了30-60%的 Herein, the increment of time cost is inevitable, as VDB is based on tree structures and has a slower random access speed than the array-based implementation

同样表格是在数据集上的表现,在global 和 incremental transform会慢一点,但是在memory上省了不少

还有一个就是无人机在仿真环境中建图并有planning效果:

4. Conclusion

提出了一种VDB-EDT算法去解决 distance transform problem. The algorithm is implemented based on a memory-efficient data structure and a novel distance transform procedure, which significantly improves the memory and runtime efficiency of EDTs.

这项工作突破了通常的EDT的限制,也可以为后面基于VDB-based mapping, distance transform and safe motion planning的研究进行使用


赠人点赞 手有余香 ;正向回馈 才能更好开放记录 hhh

【论文阅读】ICRA2021: VDB-EDT An Efficient Euclidean Distance Transform Algorithm Based on VDB Data Struct的更多相关文章

  1. 【论文阅读】ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

    ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices

  2. 论文阅读笔记六十四: Architectures for deep neural network based acoustic models defined over windowed speech waveforms(INTERSPEECH 2015)

    论文原址:https://pdfs.semanticscholar.org/eeb7/c037e6685923c76cafc0a14c5e4b00bcf475.pdf 摘要 本文研究了利用深度神经网络 ...

  3. 【论文阅读】An Anchor-Free Region Proposal Network for Faster R-CNN based Text Detection Approaches

    懒得转成文字再写一遍了,直接把做过的PPT放出来吧. 论文连接:https://link.zhihu.com/?target=https%3A//arxiv.org/pdf/1804.09003v1. ...

  4. 论文阅读之:Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space

    Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space  2018-01-04  ...

  5. 论文阅读-Temporal Phenotyping from Longitudinal Electronic Health Records: A Graph Based Framework

  6. 论文阅读:《Bag of Tricks for Efficient Text Classification》

    论文阅读:<Bag of Tricks for Efficient Text Classification> 2018-04-25 11:22:29 卓寿杰_SoulJoy 阅读数 954 ...

  7. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  8. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  9. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  10. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

随机推荐

  1. pde复习笔记 第一章 波动方程 第三节 分离变量法

    教材 谷超豪<数学物理方程>第四版,虽然我们老师用的第三版,但是除了页码对不上,习题多了一点,也似乎没有多少区别. 打算开个新栏专门总结一下pde的各种计算问题,在图书馆算的手麻了,但是习 ...

  2. 【内存优化】Oracle 的SGA与Linux的shmall和shmmax的关联

    查看linux下的Oracle共享内存段 [oracle@oradb ~]$ ipcs -m ------ Shared Memory Segments -------- key shmid owne ...

  3. oracle RDBMS Kernel Executable 占用内存过高

    oracle RDBMS Kernel Executable 占用内存过高 参考:https://www.cnblogs.com/markkang/archive/2019/11/25/1192540 ...

  4. elasticsearch 6.2.4和elasticsearch-head环境搭建 使用docker-compose方式

    elasticsearch 6.2.4和elasticsearch-head测试环境搭建 使用docker-compose方式 一 背景说明 对于新手来说搭建一个elasticsearch的测试环境稍 ...

  5. WordPress函数小结

    1.body_class()函数 为了区分不同的页面,可以用WordPress的body_class()函数 可以在head.php中给body添加:<body <?php body_cl ...

  6. C语言:找到在文件单词中字符个数最多的单词。

    第一点:这是一个传回指针的指针函数,所以在定义的时候是char*类型的函数,传进的参数是一个文件指针,(敲重点了,一定一定一定要把文件打开了才能传这个文件指针进来!!)因为这是在你的文本文件里面进行查 ...

  7. MindSpore梯度进阶操作

    技术背景 在MindSpore深度学习框架中,我们可以使用mindspore.grad对函数式编程的函数直接计算自动微分,也可以使用mindspore.ops.GradOperation求解Cell类 ...

  8. 容器的监控:使用cAdvisor,weavescope监控容器

    目录 一.系统环境 二.前言 三.容器监控的原理 四.使用docker stats监控容器 五.部署cadvisor监控容器 六.部署weavescope监控容器 一.系统环境 服务器版本 docke ...

  9. supersocket实际应用之你画我猜游戏(一)

    supersocket这款组件,让不懂tcp/ip的人都能开发出网络应用.我们不必在开发与自己主要应用不相关的代码了,主要精力都能放在设计业务逻辑上面了. 现在使用现成又完备的组件,真是大大的提高了开 ...

  10. 电脑临时文件清理2个方法?%temp% cleanmgr

    按住电脑快捷键win+R,打开运行框 输入代码 %temp%,点击回车enter或者点击确定,打开temp文件夹[此处存放的都是系统无用的缓存垃圾] 按快捷键Ctrl + A ,点击delete,删除 ...