link。

理一下逻辑,主要讲一下我做题时的疑惑和其它题解没提到的细节。

首先容易看到,一个必然不劣的贪心策略是把尽量靠近根的层铺成同样的字符。也许会有疑惑,字符串是否本质不同的判定每个位置地位相等。然而在这题里面字符串个数的贡献是和结点所为根的子树大小有关的,所以这个贪心不劣。

设树的最大深度为 \(d\),那么如果我们能实现每层都铺成同样的字符,答案就是不同长度的字符串个数,也就是 \(d\)。

考虑构造出答案为 \(d+1\) 的情况,这时候贪心就跑不出来了,具体情况是,会出现一层既有 a 又有 b,其他层都是 pure a 或 pure b

主要问题就在于 miscellaneous level 放在哪里,才能让答案最小。直觉地,我们认为把它放在尽量低(离根更远)的 level 会更优。但是其实贡献结束的地方是叶子,所以其实我们应该把它放在叶子尽量多的 level。这个时候答案为 \(d+1\)。

根据以上的推理,我们得出一个论断:最优答案在 \(d\) 和 \(d+1\) 出现。剩下的问题就是如果判断是前者还是后者。

其实这是一个简单可达性 dp 可以解决的问题,将每一个 level 压成一个 item,其体积为当层的结点个数。但是这个是 \(O(n^2)\) 的,要考虑优化。有两种解决的道路,分析后可以发现一个根号规模的结论,或者用 std::bitset 优化 dp。

注意 std::bitset 优化 dp 后状态略有不同……

#include<bits/stdc++.h>
#define cmin(x, y) x = std::min(x, y)
#define cmax(x, y) x = std::max(x, y)
#define fors(i, l, r, ...) for(int i = (l), REP##i = (r), ##__VA_ARGS__; i <= REP##i; ++i)
#define dfors(i, r, l, ...) for(int i = (r), REP##i = (l), ##__VA_ARGS__; i >= REP##i; --i)
// observation: amount different answers would be 2: maximum depth, or, it plus 1
int n, _x, dep[100100], nod[100100], leaf[100100], len, vol[100100];
// params: @nod[i]: amout of nodes at level i; @leaf[i]: amout of leaves at lv i;
// #vol[i]: volume of i-th item
std::bitset<100100> f[2100]; // if can assign it to j perfectly within lefmost i items
std::vector<int> adj[100100], zip[100100];
void pre_dfs(const int x) {
nod[dep[x]]++,leaf[dep[x]] += adj[x].empty();
for(const int y : adj[x]) dep[y] = dep[x]+1,pre_dfs(y);
}
int pre_zip() {
static int vis[100100], tot;
fors(i, 1, len) {
if(!vis[nod[i]]) vol[vis[nod[i]] = ++tot] = nod[i];
zip[vis[nod[i]]].emplace_back(i);
}
return tot; // amount of items
}
signed main() {
std::ios_base::sync_with_stdio(0);
std::cin.tie(0);
std::cin >> n >> _x;
fors(i, 1, n-1, f) std::cin >> f,adj[f].emplace_back(i+1);
pre_dfs(dep[1] = 1),len = *std::max_element(dep+1, dep+n+1); // processing basic information
int m = pre_zip(); // compressing levels with same amout of nodes
fors(i, f[0][0] = 1, m, tmp) {
f[i] = f[i-1],tmp = zip[i].size();
for(int j = 1; j <= tmp; j *= 2) tmp -= j,f[i] |= (f[i]<<(vol[i]*j));
if(tmp > 0) f[i] |= (f[i]<<(vol[i]*tmp));
}
std::vector<bool> k(len);
std::function<void(int, int)> find_path = [&](const int rem, int t) { // reviving way we DP through
if(rem == 0) return;
for(const int x : zip[rem]) {
if(vol[rem] > t || f[rem-1][t]) break;
t -= vol[rem],k[x-1] = 1;
}
find_path(rem-1, t);
};
if(f[m][_x]) { // when greedy strategy runs well
std::cout << len << "\n";
find_path(m, _x);
fors(i, 1, n) std::cout << (k[dep[i]-1]?'a':'b');
return std::cout << "\n", 0;
}
std::cout << len+1 << "\n"; // otherwise the answer would be maximum depth plus 1
int tmp = std::numeric_limits<int>::max(), tmp1 = -1;
dfors(i, _x, 0) if(f[m][i]) {
tmp = i; break;
}
find_path(m, tmp);
fors(i, 1, len) if(!k[i-1] && leaf[i] >= _x-tmp) {
tmp1 = i; break;
}
fors(i, 1, n) {
if(dep[i] == tmp1 && adj[i].empty()) std::cout << (tmp == _x?'b':(++tmp, 'a'));
else std::cout << (k[dep[i]-1]?'a':'b');
}
return std::cout << "\n", 0;
}

「codeforces - 1481F」AB Tree的更多相关文章

  1. 「算法笔记」Link-Cut Tree

    一.简介 Link-Cut Tree (简称 LCT) 是一种用来维护动态森林连通性的数据结构,适用于动态树问题. 类比树剖,树剖是通过静态地把一棵树剖成若干条链然后用一种支持区间操作的数据结构维护, ...

  2. 「CodeForces 581D」Three Logos

    BUPT 2017 Summer Training (for 16) #3A 题意 给你三个矩形,需要不重叠不留空地组成一个正方形.不存在输出-1,否则输出边长和这个正方形(A,B,C表示三个不同矩形 ...

  3. 「CodeForces - 50C 」Happy Farm 5 (几何)

    BUPT 2017 summer training (16) #2B 题意 有一些二维直角坐标系上的整数坐标的点,找出严格包含这些点的只能八个方向走出来步数最少的路径,输出最少步数. 题解 这题要求严 ...

  4. 「CodeForces - 598B」Queries on a String

    BUPT 2017 summer training (for 16) #1I 题意 字符串s(1 ≤ |s| ≤ 10 000),有m(1 ≤ m ≤ 300)次操作,每次给l,r,k,代表将r位置插 ...

  5. 「CodeForces - 717E」Paint it really, really dark gray (dfs)

    BUPT 2017 summer training (for 16) #1H 题意 每个节点是黑色or白色,经过一个节点就会改变它的颜色,一开始在1节点.求一条路径使得所有点变成黑色. 题解 dfs时 ...

  6. 「CodeForces 476A」Dreamoon and Stairs

    Dreamoon and Stairs 题意翻译 题面 DM小朋友想要上一个有 \(n\) 级台阶的楼梯.他每一步可以上 \(1\) 或 \(2\) 级台阶.假设他走上这个台阶一共用了 \(x\) 步 ...

  7. 「CodeForces 546B」Soldier and Badges 解题报告

    CF546B Soldier and Badges 题意翻译 给 n 个数,每次操作可以将一个数 +1,要使这 n 个数都不相同, 求最少要加多少? \(1 \le n \le 3000\) 感谢@凉 ...

  8. 「Codeforces 79D」Password

    Description 有一个 01 序列 \(a_1,a_2,\cdots,a_n\),初始时全为 \(0\). 给定 \(m\) 个长度,分别为 \(l_1\sim l_m\). 每次可以选择一个 ...

  9. 「Codeforces 468C」Hack it!

    Description 定义 \(f(x)\) 表示 \(x\) 的各个数位之和.现在要求 \(\sum_{i=l}^rf(i)\bmod a\). 显然 ans=solve(l,r)%a; if(a ...

  10. 「Codeforces 724F」Uniformly Branched Trees

    题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...

随机推荐

  1. 暑期实习开始啦「GitHub 热点速览」

    无巧不成书,刚好最近有小伙伴在找实习,而 GitHub 热榜又有收录实习信息的项目在榜.所以,无意外本周特推就收录了这个实习项目,当然还有国内版本.除了应景的实习 repo 之外,还有帮你管理文件的 ...

  2. 保护数据隐私:深入探索Golang中的SM4加密解密算法

    前言 最近做的项目对安全性要求比较高,特别强调:系统不能涉及MD5.SHA1.RSA1024.DES高风险算法. 那用什么嘞?甲方:建议用国产密码算法SM4. 擅长敏捷开发(CV大法)的我,先去Git ...

  3. Linux 可执行文件瘦身指令 strip 使用示例

    以下内容为本人的学习笔记,如需要转载,请声明原文链接微信公众号「ENG八戒」https://mp.weixin.qq.com/s/lJ8vj-FszEoplMVcmT0I0w 在 Linux 系统下开 ...

  4. Educational Codeforces Round 151 (Rated for Div. 2) A-D

    A 代码 #include <bits/stdc++.h> using namespace std; using ll = long long; bool solve() { int n, ...

  5. 我用numpy实现了GPT-2,GPT-2源码,GPT-2模型加速推理,并且可以在树莓派上运行,读了不少hungging face源码,手动实现了numpy的GPT2模型

    之前分别用numpy实现了mlp,cnn,lstm和bert模型,这周顺带搞一下GPT-2,纯numpy实现,最重要的是可在树莓派上或其他不能安装pytorch的板子上运行,生成数据 gpt-2的ma ...

  6. vscode中react组件

    通过使用这个插件我们可以很方便的进行组件/方法/文件的导入 本篇博客仅对插件进行介绍翻译,便于自己以后使用 常用片段列表 imr: 引入 React import React from 'react' ...

  7. CF1794B Not Dividing题解

    如果 \(a_i\) 可以整除 \(a_{i - 1}\),只要在 \(a_i\) 上 \(+1\) 即可,这样 \(a_i \bmod a_{i - 1} = 1\) 就满足题目要求了,如果这样算来 ...

  8. ISP图像处理之Demosaic算法及相关

    CFA及Demosaic介绍 1.Bayer(拜耳滤波器得到彩色) 图像在将实际的景物转换为图像数据时, 通常是将传感器分别接收红. 绿. 蓝三个分量的信息, 然后将红. 绿. 蓝三个分量的信息合成彩 ...

  9. Unity UGUI的CanvasScaler(画布缩放器)组件的介绍及使用

    Unity UGUI的CanvasScaler(画布缩放器)组件的介绍及使用 1. 什么是CanvasScaler组件? CanvasScaler是Unity中UGUI系统中的一个组件,用于控制画布的 ...

  10. debezium同步postgresql数据至kafka

    0 实验环境 全部部署于本地虚拟机 debezium docker部署 postgresql.kafka本机部署 1 postgresql 1.1 配置 设置postgres密码为123 仿照exam ...