你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
         偷窃到的最高金额 = 1 + 3 = 4 。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
        偷窃到的最高金额 = 2 + 9 + 1 = 12 。
具体思路请见leetcode刷题一栏按摩师的解析
 
因此【动态规划】告诉我们,有些问题可以从最简单的情况考虑,逐步递推,每一步都记住当前问题的答案,即当前最优解。不是直接对问题求解,由于找到了问题最初始的样子,因此在后边的求解过程每一步我们都可以参考之前的结果。
 
 
打家劫舍问题(T2)与上楼梯花费体力问题(T1)的不同:
初始化:T2的dp[1]是与dp[0]有关,要么偷家1要么偷家2,哪家多偷哪家,因此dp[1]与取nums[0]与nums[1]的最大;
              T1要么从第一阶开始要么从第二阶,两者没有必要联系,就是非此即彼的两种情况,dp[1] = cost[1],dp[0] = cost[0].
过程:T2:1.偷了这家上家就一定不能偷,因此状态就是dp[i-2]+nums[i]  2.这家不偷,上家也可偷可以不偷,状态就是dp[i-1]。最后两者取最大值就是当前最大值。
           T1:当前阶层的体力是一定要消耗的,体力消耗最少则取决于上一次是怎么跨越的,是跨越了两阶,还是一阶层,而着两种取最少的就是当前的最小值。
自己说不出所以然,理解只能到这里,还希望大佬指正,学习一下。
 1 int rob(int* nums, int numsSize)
2 {
3 int *dp;
4 if(numsSize == 0)
5 return 0;
6 if(numsSize == 1)
7 return nums[0];
8 dp = (int *)malloc(sizeof(int) * numsSize);
9 dp[0] = nums[0];
10 dp[1] = nums[1] > nums[0] ? nums[1]:nums[0];
11 for(int i = 2; i < numsSize; i++)
12 {
13 dp[i] = (nums[i]+dp[i-2]) > dp[i-1] ? (nums[i]+dp[i-2]) : dp[i-1];
14 }
15 return dp[numsSize - 1];
16 }
 

DP:打家劫舍的更多相关文章

  1. (leetcode:选择不相邻元素,求和最大问题):打家劫舍(DP:198/213/337)

    题型:从数组中选择不相邻元素,求和最大 (1)对于数组中的每个元素,都存在两种可能性:(1)选择(2)不选择,所以对于这类问题,暴力方法(递归思路)的时间复杂度为:O(2^n): (2)递归思路中往往 ...

  2. Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber)

    Leetcode之动态规划(DP)专题-198. 打家劫舍(House Robber) 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互 ...

  3. 1、线性DP 198. 打家劫舍

    198. 打家劫舍 https://leetcode-cn.com/problems/house-robber/ //dp动态规划,dp[i] 状态表示0-i家的盗的得最大值.那么dp[i] = (d ...

  4. 【LeetCode动态规划#11】打家劫舍系列题(涉及环结构和树形DP的讨论)

    打家劫舍 力扣题目链接(opens new window) 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻 ...

  5. [LeetCode]198. 打家劫舍(DP)

    题目 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定一个 ...

  6. [LeetCode] 337. 打家劫舍 III (树形dp)

    题目 在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为"根". 除了"根"之外,每栋房子有且只有一个&q ...

  7. 337. 打家劫舍 III(树上dp)

    在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为"根". 除了"根"之外,每栋房子有且只有一个" ...

  8. 1、线性DP 213. 打家劫舍 II

    https://leetcode-cn.com/problems/house-robber-ii/ //rob 0, not rob n-1 || not rob 0,not rob n-1 ==&g ...

  9. leetcode 198 打家劫舍 Python 动态规划

    打家劫舍 你是一个专业的小偷,计划偷窃沿街的房屋.每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警. 给定 ...

  10. 213 House Robber II 打家劫舍 II

    注意事项: 这是 打家劫舍 的延伸.在上次盗窃完一条街道之后,窃贼又转到了一个新的地方,这样他就不会引起太多注意.这一次,这个地方的所有房屋都围成一圈.这意味着第一个房子是最后一个是紧挨着的.同时,这 ...

随机推荐

  1. 配置oracle DG

    主库名称:prod1 使用asm存储数据 11.2.03 同一机器备库名称:dg 使用file存储数据 11.2.03 配置备库的参数文件cd $ORACLE_HOME/dbsvi initdg.or ...

  2. Java 生态需要新鲜的血液、需要狂飙的刺激。Solon v2.4.1 发布

    Solon 是什么开源项目? 一个,Java 新的生态型应用开发框架.它从零开始构建,有自己的标准规范与开放生态(历时五年,已有全球第二级别的生态规模).与其他框架相比,它解决了两个重要的痛点:启动慢 ...

  3. 你知道ES6中的这些属性吗

    ES6,也称ESMAScript2015,这个版本增加了很多好用的特性 变量声明 ES6之前用var来定义变量,ES6增加了两个变量声明的方式,分别为const和let,const用来定义常量,let ...

  4. c#如何使用WASM跨语言调用?

    介绍Wasm(WebAssembly) WebAssembly(简称Wasm)是一种用于基于堆栈的虚拟机的二进制指令格式.Wasm被设计为编程语言的可移植编译目标,支持在web上部署客户端和服务器应用 ...

  5. 关于package-lock.json

    前言 上篇文章我们了解了package.json,一般与它同时出现的还有一个package-lock.json,这两者又有什么关系呢?下面一起来了解吧. 介绍 package-lock.json 它会 ...

  6. 03.前后端分离中台框架 zhontai 项目代码生成器的使用

    zhontai 项目 基于 .Net7.x + Vue 等技术的前后端分离后台权限管理系统,想你所想的开发理念,希望减少工作量,帮助大家实现快速开发 后端地址:https://github.com/z ...

  7. python 面试题第一弹

    1. 如何理解Python中的深浅拷贝 浅拷贝(Shallow Copy)创建一个新的对象,该对象的内容是原始对象的引用.这意味着新对象与原始对象共享相同的内存地址,因此对于可变对象来说,如果修改了其 ...

  8. 前瞻|Java 21 新特性 String Templates(字符串模版)

    在日常写Java的时候,对于字符串的操作是非常普遍的,其中最常见的就是对字符串的组织.也因为这个操作非常普遍,所以诞生了很多方案,总下来大概有这么几种: 使用+拼接 使用StringBuffer和Sp ...

  9. iOS日志获取

    IOS日志获取 崩溃日志存放目录: /var/mobile/Library/Logs/CrashReporter

  10. git status详解

    git status详解 在使用Git进行版本控制时,git status是一个非常有用的命令,用于查看当前代码仓库的状态.它可以告诉你哪些文件已更改.添加或删除,以及是否有未提交的更改等.本篇博客文 ...