神经网络入门篇之深层神经网络:详解前向传播和反向传播(Forward and backward propagation)
深层神经网络(Deep L-layer neural network)
复习下前面的内容:
1.逻辑回归,结构如下图左边。一个隐藏层的神经网络,结构下图右边:
注意,神经网络的层数是这么定义的:从左到右,由0开始定义,比如上边右图,\({x}_{1}\)、\({x}_{2}\)、\({x}_{3}\),这层是第0层,这层左边的隐藏层是第1层,由此类推。如下图左边是两个隐藏层的神经网络,右边是5个隐藏层的神经网络。
严格上来说逻辑回归也是一个一层的神经网络,而上边右图一个深得多的模型,浅与深仅仅是指一种程度。记住以下要点:
有一个隐藏层的神经网络,就是一个两层神经网络。记住当算神经网络的层数时,不算输入层,只算隐藏层和输出层。
但是在过去的几年中,DLI(深度学习学院 deep learning institute)已经意识到有一些函数,只有非常深的神经网络能学会,而更浅的模型则办不到。尽管对于任何给定的问题很难去提前预测到底需要多深的神经网络,所以先去尝试逻辑回归,尝试一层然后两层隐含层,然后把隐含层的数量看做是另一个可以自由选择大小的超参数,然后再保留交叉验证数据上评估,或者用开发集来评估。
再看下深度学习的符号定义:
上图是一个四层的神经网络,有三个隐藏层。可以看到,第一层(即左边数过去第二层,因为输入层是第0层)有5个神经元数目,第二层5个,第三层3个。
用L表示层数,上图:\(L=4\),输入层的索引为“0”,第一个隐藏层\({n}^{[1]}=5\),表示有5个隐藏神经元,同理\({n}^{[2]}=5\),\({n}^{[3]}=3\),\({{n}^{[4]}}\)=\({{n}^{[L]}}=1\)(输出单元为1)。而输入层,\({n}^{[0]}={n}_{x}=3\)。
在不同层所拥有的神经元的数目,对于每层l都用\({a}^{[l]}\)来记作l层激活后结果,会在后面看到在正向传播时,最终能会计算出\({{a}^{[l]}}\)。
通过用激活函数 \(g\) 计算\({z}^{[l]}\),激活函数也被索引为层数\(l\),然后用\({w}^{[l]}\)来记作在l层计算\({z}^{[l]}\)值的权重。类似的,\({{z}^{[l]}}\)里的方程\({b}^{[l]}\)也一样。
最后总结下符号约定:
输入的特征记作\(x\),但是\(x\)同样也是0层的激活函数,所以\(x={a}^{[0]}\)。
最后一层的激活函数,所以\({a}^{[L]}\)是等于这个神经网络所预测的输出结果。
前向传播和反向传播
- 之前的神经网络入门篇都是基于浅层神经网络进行的,此篇开始基于深层神经网络进行
之前学习了构成深度神经网络的基本模块,比如每一层都有前向传播步骤以及一个相反的反向传播步骤,这次讲讲如何实现这些步骤。
先讲前向传播,输入\({a}^{[l-1]}\),输出是\({a}^{[l]}\),缓存为\({z}^{[l]}\);从实现的角度来说可以缓存下\({w}^{[l]}\)和\({b}^{[l]}\),这样更容易在不同的环节中调用函数。
所以前向传播的步骤可以写成: \({z}^{[l]}={W}^{[l]}\cdot{a}^{[l-1]}+{b}^{[l]}\)
\({{a}^{[l]}}={{g}^{[l]}}\left( {{z}^{[l]}}\right)\)
向量化实现过程可以写成: \({z}^{[l]}={W}^{[l]}\cdot {A}^{[l-1]}+{b}^{[l]}\)
\({A}^{[l]}={g}^{[l]}({Z}^{[l]})\)
前向传播需要喂入\({A}^{[0]}\)也就是\(X\),来初始化;初始化的是第一层的输入值。\({a}^{[0]}\)对应于一个训练样本的输入特征,而\({{A}^{[0]}}\)对应于一整个训练样本的输入特征,所以这就是这条链的第一个前向函数的输入,重复这个步骤就可以从左到右计算前向传播。
下面讲反向传播的步骤:
输入为\({{da}^{[l]}}\),输出为\({{da}^{[l-1]}}\),\({{dw}^{[l]}}\), \({{db}^{[l]}}\)
所以反向传播的步骤可以写成:
(1)\(d{{z}^{[l]}}=d{{a}^{[l]}}*{{g}^{[l]}}'( {{z}^{[l]}})\)
(2)\(d{{w}^{[l]}}=d{{z}^{[l]}}\cdot{{a}^{[l-1]}}~\)
(3)\(d{{b}^{[l]}}=d{{z}^{[l]}}~~\)
(4)\(d{{a}^{[l-1]}}={{w}^{\left[ l \right]T}}\cdot {{dz}^{[l]}}\)
(5)\(d{{z}^{[l]}}={{w}^{[l+1]T}}d{{z}^{[l+1]}}\cdot \text{ }{{g}^{[l]}}'( {{z}^{[l]}})~\)
式子(5)由式子(4)带入式子(1)得到,前四个式子就可实现反向函数。
向量化实现过程可以写成:
(6)\(d{{Z}^{[l]}}=d{{A}^{[l]}}*{{g}^{\left[ l \right]}}'\left({{Z}^{[l]}} \right)~~\)
(7)\(d{{W}^{[l]}}=\frac{1}{m}\text{}d{{Z}^{[l]}}\cdot {{A}^{\left[ l-1 \right]T}}\)
(8)\(d{{b}^{[l]}}=\frac{1}{m}\text{ }np.sum(d{{z}^{[l]}},axis=1,keepdims=True)\)
(9)\(d{{A}^{[l-1]}}={{W}^{\left[ l \right]T}}.d{{Z}^{[l]}}\)
总结一下:
第一层可能有一个ReLU激活函数,第二层为另一个ReLU激活函数,第三层可能是sigmoid函数(如果做二分类的话),输出值为,用来计算损失;这样就可以向后迭代进行反向传播求导来求\({{dw}^{[3]}}\),\({{db}^{[3]}}\) ,\({{dw}^{[2]}}\) ,\({{db}^{[2]}}\) ,\({{dw}^{[1]}}\) ,\({{db}^{[1]}}\)。在计算的时候,缓存会把\({{z}^{[1]}}\) \({{z}^{[2]}}\)\({{z}^{[3]}}\)传递过来,然后回传\({{da}^{[2]}}\),\({{da}^{[1]}}\) ,可以用来计算\({{da}^{[0]}}\),但不会使用它,这里讲述了一个三层网络的前向和反向传播,还有一个细节没讲就是前向递归——用输入数据来初始化,那么反向递归(使用Logistic回归做二分类)——对\({{A}^{[l]}}\) 求导。
忠告:补补微积分和线性代数,多推导,多实践。
神经网络入门篇之深层神经网络:详解前向传播和反向传播(Forward and backward propagation)的更多相关文章
- Farseer.net轻量级开源框架 入门篇:添加数据详解
导航 目 录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 入门篇: 分类逻辑层 下一篇:Farseer.net轻量级开源框架 入门篇: 修改数据详解 ...
- Farseer.net轻量级开源框架 入门篇:修改数据详解
导航 目 录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 入门篇: 添加数据详解 下一篇:Farseer.net轻量级开源框架 入门篇: 删除数据详解 ...
- Farseer.net轻量级开源框架 入门篇:删除数据详解
导航 目 录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 入门篇: 修改数据详解 下一篇:Farseer.net轻量级开源框架 入门篇: 查询数据详解 ...
- Farseer.net轻量级开源框架 入门篇:查询数据详解
导航 目 录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 入门篇: 删除数据详解 下一篇:Farseer.net轻量级开源框架 中级篇: Where条 ...
- 【MySQL】Linux下mysql安装全过程——小白入门篇(含有问题详解)
本次安装操作在申请的腾讯云上实现(版本:CentOS Linux release 7.4.1708 (Core) ). 根据教程实现(中途各种挖坑,填坑...),地址:http://www.runoo ...
- SaltStack 入门到精通第三篇:Salt-Minion配置文件详解
SaltStack 入门到精通第三篇:Salt-Minion配置文件详解 作者:ArlenJ 发布日期:2014-06-09 17:52:16 ##### 主要配置设置 ##### 配置 默认值 ...
- SaltStack 入门到精通第二篇:Salt-master配置文件详解
SaltStack 入门到精通第二篇:Salt-master配置文件详解 转自(coocla):http://blog.coocla.org/301.html 原本想要重新翻译salt-mas ...
- Mysql高手系列 - 第12篇:子查询详解
这是Mysql系列第12篇. 环境:mysql5.7.25,cmd命令中进行演示. 本章节非常重要. 子查询 出现在select语句中的select语句,称为子查询或内查询. 外部的select查询语 ...
- Mysql高手系列 - 第19篇:mysql游标详解,此技能可用于救火
Mysql系列的目标是:通过这个系列从入门到全面掌握一个高级开发所需要的全部技能. 这是Mysql系列第19篇. 环境:mysql5.7.25,cmd命令中进行演示. 代码中被[]包含的表示可选,|符 ...
- Java web 入门知识 及HTTP协议详解
Java web 入门知识 及HTTP协议详解 WEB入门 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资 ...
随机推荐
- AcWing 4797. 移动棋子题解
算出数值为 \(1\) 的点离 \((3, 3)\) 的距离即可. #include <iostream> #include <cstring> #include <al ...
- Python 潮流周刊第 14 期(内容摘要)
你好,我是猫哥.这里每周分享优质的 Python.AI 及通用技术内容,本期分享的全部是英文材料. 本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章.教程. ...
- 让nodejs开启服务更简单--koa篇
在nodejs原始的http模块中,开启一个服务编码相对麻烦,需要对请求方式及上传的数据进行各种判断,而koa给我们提供了比较便捷的编码方式,同时它还有很多中间件可以直接拿来使用. 首先来看,如何 ...
- 带你读论文丨S&P21 Survivalism: Living-Off-The-Land 经典离地攻击
本文分享自华为云社区<[论文阅读] (21)S&P21 Survivalism: Living-Off-The-Land经典离地攻击>,作者: eastmount . 摘要 随着恶 ...
- 华为云ECS上搭建Hadoop集群环境启动时报错“java.net.BindException: Cannot assign requested address”问题的解决
启动时使用: ./sbin/start-all.sh 1 报错: java.net.BindException: Problem binding to [test7972:9000] java.net ...
- 【matplotlib基础】--图例
Matplotlib 中的图例是帮助观察者理解图像数据的重要工具.图例通常包含在图像中,用于解释不同的颜色.形状.标签和其他元素. 1. 主要参数 当不设置图例的参数时,默认的图例是这样的. impo ...
- 在CentOS 8上安装Xrdp远程桌面服务
如何在CentOS 8上安装Xrdp远程桌面服务 写在前面 Xrdp是Microsoft远程桌面协议(RDP)的开源实现,可让您以图形方式控制远程系统.使用RDP,您可以登录到远程计算机并创建真实的桌 ...
- KRPANO资源分析工具下载四方环视全景图
提示:目前分析工具中的全景图下载功能将被极速全景图下载大师替代,相比分析工具,极速全景图下载大师支持更多的网站(包括各类KRPano全景网站,和百度街景) 详细可以查看如下的链接: 极速全景图下载大师 ...
- Python并发编程——操作系统发展史、多道技术、进程理论、开启进程、join方法、进程间的数据隔离
文章目录 必备知识回顾 今日内容详细 操作系统发展史 多道技术 必备知识点 多道技术图解 多道技术重点知识 进程理论 必备知识点 进程调度 进程运行的三状态图 两对重要概念 开启进程的两种方式 joi ...
- Arduino Uno Rev3
Overview Arduino Uno is a microcontroller board based on the ATmega328P (datasheet). It has 14 digit ...