嵌入式工程师到底要不要学习ARM汇编指令?arm学习文章汇总

《到底什么是Cortex、ARMv8、arm架构、ARM指令集、soc?一文帮你梳理基础概念【科普】》

关于ARM指令用到的IDE开发环境可以参考下面这篇文章

1. 从0开始学ARM-安装Keil MDK uVision集成开发环境

2. 从0开始学ARM-CPU原理,基于ARM的SOC讲解

3. 从0开始学ARM-ARM模式、寄存器、流水线

4. 从0开始学ARM-ARM指令,移位、数据处理、BL、机器码

5. 从0开始学ARM-MRS、MSR、寻址操作、原子操作原理

《6. 从0开始学ARM-异常及中断处理、异常向量表、swi》

一、MDK和GNU伪指令区别

我们在学习汇编代码的时候经过会看到以下两种风格的代码:

gnu代码开头是:

.global _start
_start: @汇编入口
ldr sp,=0x41000000
.end @汇编程序结束

MDK代码开头是:

	AREA Example,CODE,READONLY    ;声明代码段Example
ENTRY ;程序入口
Start
MOV R0,#0
OVER
END

这两种风格的代码是要使用不同的编译器,我们之前的实例代码都是MDK风格的。

那么多对于我们初学者来说要学习哪种风的呢?

答案是肯定的,学习GNU风格的汇编代码,因为做Linux驱动开发必须掌握的linux内核、uboot,而这两个软件就是GNU风格的。

为了大家不要把过多精力浪费在暂时没用的知识上,下面我们只讲GNU风格汇编。

二、GNU汇编书写格式:

1. 代码行中的注释符号:

‘@’ 整行注释符号:

‘#’ 语句分离符号:

直接操作数前缀: ‘#’ 或 ‘$’

2. 全局标号:

标号只能由a~z,A~Z,0~9,“.”,_等(由点、字母、数字、下划线等组成,除局部标号外,不能以数字开头)字符组成,标号的后面加“:”。

段内标号的地址值在汇编时确定;
段外标号的地址值在连接时确定。

3. 局部标号:

局部标号主要在局部范围内使用而且局部标号可以重复出现。它由两部组成开头是一个0-99直接的数字局部标号 后面加“:”

F:指示编译器只向前搜索,代码行数增加的方向 / 代码的下一句
B:指示编译器只向后搜索,代码行数减小的方向

注意局部标号的跳转,就近原则

举例:

文件位置
arch/arm/kernel/entry-armv.S

三、伪操作:

1. 符号定义伪指令

标号 含义
.global 使得符号对连接器可见,变为对整个工程可用的全局变量
_start 汇编程序的缺省入口是_ start标号,用户也可以在连接脚本文件中用ENTRY标志指明其它入口点.
.local 表示符号对外部不可见,只对本文件可见

2. 数据定义(Data Definition)伪操作

数据定义伪操作一般用于为特定的数据分配存储单元,同时可完成已分配存储单元的初始化。

常见的数据定义伪操作有如下几种:

标号 含义
.byte 单字节定义 0x12,‘a’,23 【必须偶数个】
.short 定义2字节数据 0x1234,65535
.long /.word 定义4字节数据 0x12345678
.quad 定义8字节 .quad 0x1234567812345678
.float 定义浮点数 .float 0f3.2
.string/.asciz/.ascii 定义字符串 .ascii “abcd\0”, 注意:.ascii 伪操作定义的字符串需要每行添加结尾字符 '\0',其他不需要
.space/.skip 用于分配一块连续的存储区域并初始化为指定的值,如果后面的填充值省略不写则在后面填充为0;
.rept 重复执行接下来的指令,以.rept开始,以.endr结束

【举例】

.word

val:   .word  0x11223344
mov r1,#val ;将值0x11223344设置到寄存器r1中

.space

   label: .space size,expr     ;expr可以是4字节以内的浮点数
a: space 8, 0x1

.rept

 .rept cnt   ;cnt是重复次数
.endr

注意:

  1. 变量的定义放在,stop后,.end前
  2. 标号是地址的助记符,标号不占存储空间。位置在end前就可以,相对随意。

3. if选择

语法结构

.if  logical-expressing
……
.else
……
.endif

类似c语言里的条件编译 。

【举例】

.if  val2==1
mov r1,#val2
.endif

4. macro宏定义

.macro,.endm 宏定义类似c语言里的宏函数 。

macro伪操作可以将一段代码定义为一个整体,称为宏指令。然后就可以在程序中通过宏指令多次调用该段代码。

语法格式:

   .macro    {$label} 名字{$parameter{,$parameter}…}
……..code
.endm

其中,$标号在宏指令被展开时,标号会被替换为用户定义的符号。

宏操作可以使用一个或多个参数,当宏操作被展开时,这些参数被相应的值替换。

注意:先定义后使用

举例:

【例1】:没有参数的宏实现子函数返回

 .macro MOV_PC_LR
MOV PC,LR
.endm
调用方式如下:
MOV_PC_LR

【例2】:带参数宏实现子函数返回

 .macro MOV_PC_LR ,param
mov r1,\param
MOV PC,LR
.endm

调用方法如下:

MOV_PC_LR  #12

四、杂项伪操作

标号 含义
.global/ 用来声明一个全局的符号
.arm 定义一下代码使用ARM指令集编译
.thumb 定义一下代码使用Thumb指令集编译
.section .section expr 定义一个段。expr可以使.text .data. .bss
.text .text {subsection} 将定义符开始的代码编译到代码段
.data .data {subsection} 将定义符开始的代码编译到数据段,初始化数据段
.bss .bss {subsection} 将变量存放到.bss段,未初始化数据段
.align .align{alignment}{,fill}{,max} 通过用零或指定的数据进行填充来使当前位置与指定边界对齐
.align 4 --- 16字节对齐 2的4次方
.align (4) --- 4字节对齐
.org .org offset{,expr} 指定从当前地址加上offset开始存放代码,并且从当前地址到当前地址加上offset之间的内存单元,用零或指定的数据进行填充
.extern 用于声明一个外部符号,用于兼容性其他汇编
.code 32 同.arm
.code 16 同.thumb
.weak 用于声明一个弱符号,如果这个符号没有定义,编译就忽略,而不会报错
.end 文件结束
.include .include “filename” 包含指定的头文件, 可以把一个汇编常量定义放在头文件中
.equ 格式:.equ symbol, expression把某一个符号(symbol)定义成某一个值(expression).该指令并不分配空间,类似于c语言的 #define
.set 给一个全局变量或局部变量赋值,和.equ的功能一样

举例:

.set

.set start, 0x40
mov r1, #start ;r1里面是0x40

举例

.equ

.equ   start,  0x40
mov r1, #start ;r1里面是0x40
#define  PI  3.1415

等价于

.equ   PI, 31415

五、GNU伪指令

关键点:伪指令在编译时会转化为对应的ARM指令

  1. ADR伪指令 :

    该指令把标签所在的地址加载到寄存器中。

    ADR伪指令为小范围地址读取伪指令,使用的相对偏移范围:当地址值是字节对齐 (8位) 时,取值范围为-255~255,当地址值是字对齐 (32位) 时,取值范围为-1020~1020。

    语法格式:
  	ADR{cond}   register,label
ADR R0, lable
  1. ADRL伪指令:

    将中等范围地址读取到寄存器中

ADRL伪指令为中等范围地址读取伪指令。使用相对偏移范围:当地址值是字节对齐时,取值范围为-64~64KB;当地址值是字对齐时,取值范围为-256~256KB

语法格式:

ADRL{cond}   register,label
ADRL R0,lable
  1. LDR伪指令:

    LDR伪指令装载一个32位的常数和一个地址到寄存器。

    语法格式:
LDR{cond}  register,=[expr|label-expr]
LDR R0,=0XFFFF0000 ; mov r1,#0x12 对比一下

注意:

(1)ldr伪指令和ldr指令区分

下面是ldr伪指令:

ldr r1,=val  @ r1 = val   是伪指令,将val标号地址赋给r1
【与MDK不一样,MDK只支持ldr r1,=val】

下面是ldr指令:

ldr r2,val   @ r1 = *val    是arm指令,将标号val地址里的内容给r2
val: .word 0x11223344

(2)如何利用ldr伪指令实现长跳转

  ldr  pc,=32位地址

(3)编码中解决非立即数的问题

用arm伪指令ldr

ldr r0,=0x999   ;0x999  不是立即数,

六、GNU汇编的编译

1. 不含lds文件的编译

假设我们有以下代码,包括1个main.c文件,1个start.s文件:

start.s

.global _start
_start: @汇编入口
ldr sp,=0x41000000
b main
.global mystrcopy
.text
mystrcopy: //参数dest->r0,src->r2
LDRB r2, [r1], #1
STRB r2, [r0], #1
CMP r2, #0 //判断是不是字符串尾
BNE mystrcopy
MOV pc, lr
stop:
b stop @死循环,防止跑飞 等价于while(1)
.end @汇编程序结束

main.c

extern void mystrcopy(char *d,const char *s);
int main(void)
{
const char *src ="yikoulinux";
char dest[20]={};
mystrcopy(dest,src);//调用汇编实现的mystrcopy函数
while(1);
return 0;
}

Makefile编写方法如下:

1. TARGET=start
2. TARGETC=main
3. all:
4. arm-none-linux-gnueabi-gcc -O0 -g -c -o $(TARGETC).o $(TARGETC).c
5. arm-none-linux-gnueabi-gcc -O0 -g -c -o $(TARGET).o $(TARGET).s
6. #arm-none-linux-gnueabi-gcc -O0 -g -S -o $(TARGETC).s $(TARGETC).c
7. arm-none-linux-gnueabi-ld $(TARGETC).o $(TARGET).o -Ttext 0x40008000 -o $(TARGET).elf
8. arm-none-linux-gnueabi-objcopy -O binary -S $(TARGET).elf $(TARGET).bin
9. clean:
10. rm -rf *.o *.elf *.dis *.bin

Makefile含义如下:

  1. 定义环境变量TARGET=start,start为汇编文件的文件名
  2. 定义环境变量TARGETC=main,main为c语言文件
  3. 目标:all,4~8行是该指令的指令语句
  4. 将main.c编译生成main.o,$(TARGETC)会被替换成main
  5. 将start.s编译生成start.o,$(TARGET)会被替换成start
  6. 4-5也可以用该行1条指令实现
  7. 通过ld命令将main.o、start.o链接生成start.elf,-Ttext 0x40008000表示设置代码段起始地址为0x40008000
  8. 通过objcopy将start.elf转换成start.bin文件,-O binary (或--out-target=binary) 输出为原始的二进制文件,-S (或 --strip-all)输出文件中不要重定位信息和符号信息,缩小了文件尺寸,
  9. clean目标
  10. clean目标的执行语句,删除编译产生的临时文件

【补充】

  1. gcc的代码优化级别,在 makefile 文件中的编译命令

    4级 O0 -- O3 数字越大,优化程度越高。O3最大优化
  2. volatile作用

    volatile修饰的变量,编译器不再进行优化,每次都真正访问内存地址空间。

2. 依赖lds文件编译

实际的工程文件,段复杂程度远比我们这个要复杂的多,尤其Linux内核有几万个文件,段的分布及其复杂,所以这就需要我们借助lds文件来定义内存的分布。

main.c和start.s和上一节一致。

map.lds

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
/*OUTPUT_FORMAT("elf32-arm", "elf32-arm", "elf32-arm")*/
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
. = 0x40008000;
. = ALIGN(4);
.text :
{
.start.o(.text)
*(.text)
}
. = ALIGN(4);
.rodata :
{ *(.rodata) }
. = ALIGN(4);
.data :
{ *(.data) }
. = ALIGN(4);
.bss :
{ *(.bss) }
}

解释一下上述的例子:

  1. OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")

    指定输出object档案预设的binary 文件格式。可以使用objdump -i列出支持的binary 文件格式;
  2. OUTPUT_ARCH(arm) 指定输出的平台为arm,可以透过objdump -i查询支持平台;
  3. ENTRY(_start) :将符号_start的值设置成入口地址;
  4. . = 0x40008000: 把定位器符号置为0x40008000(若不指定, 则该符号的初始值为0);
  5. .text : { .start.o(.text) (.text) } :前者表示将start.o放到text段的第一个位置,后者表示将所有(符号代表任意输入文件)输入文件的.text section合并成一个.text section;
  6. .rodata : { *(.data) } : 将所有输入文件的.rodata section合并成一个.rodata section;
  7. .data : { *(.data) } : 将所有输入文件的.data section合并成一个.data section;
  8. .bss : { *(.bss) } : 将所有输入文件的.bss section合并成一个.bss section;该段通常存放全局未初始化变量
  9. . = ALIGN(4);表示下面的段4字节对齐

连接器每读完一个section描述后, 将定位器符号的值增加该section的大小。

来看下,Makefile应该如何写:

# CORTEX-A9 PERI DRIVER CODE
# VERSION 1.0
# ATHUOR 一口Linux
# MODIFY DATE
# 2020.11.17 Makefile
#=================================================#
CROSS_COMPILE = arm-none-linux-gnueabi-
NAME =start
CFLAGS=-mfloat-abi=softfp -mfpu=vfpv3 -mabi=apcs-gnu -fno-builtin -fno-builtin-function -g -O0 -c
LD = $(CROSS_COMPILE)ld
CC = $(CROSS_COMPILE)gcc
OBJCOPY = $(CROSS_COMPILE)objcopy
OBJDUMP = $(CROSS_COMPILE)objdump
OBJS=start.o main.o
#================================================#
all: $(OBJS)
$(LD) $(OBJS) -T map.lds -o $(NAME).elf
$(OBJCOPY) -O binary $(NAME).elf $(NAME).bin
$(OBJDUMP) -D $(NAME).elf > $(NAME).dis
%.o: %.S
$(CC) $(CFLAGS) -c -o $@ $<
%.o: %.s
$(CC) $(CFLAGS) -c -o $@ $<
%.o: %.c
$(CC) $(CFLAGS) -c -o $@ $<
clean:
rm -rf $(OBJS) *.elf *.bin *.dis *.o

编译结果如下:

最终生成start.bin,改文件可以烧录到开发板测试,因为本例没有直观现象,后续文章我们加入其它功能再测试。

【注意】

  1. 其中交叉编译工具链arm-none-linux-gnueabi- 要根据自己实际的平台来选择,本例是基于三星的exynos-4412工具链实现的。
  2. 地址0x40008000也不是随便选择的,

    读者可以根据自己手里的开发板对应的soc手册查找该地址。

linux内核的异常向量表

linux内核的内存分布也是依赖lds文件定义的,linux内核的编译我们暂不讨论,编译好之后会再以下位置生成对应的lds文件:

arch/arm/kernel/vmlinux.lds

我们看下该文件的部分内容:

  1. OUTPUT_ARCH(arm)制定对应的处理器;
  2. ENTRY(stext)表示程序的入口是stext。

同时我们也可以看到linux内存的划分更加的复杂,后续我们讨论linux内核,再继续分析该文件。

3. elf文件和bin文件区别:

1) ELF

ELF文件格式是一个开放标准,各种UNIX系统的可执行文件都采用ELF格式,它有三种不同的类型:

  • 可重定位的目标文件(Relocatable,或者Object File)
  • 可执行文件(Executable)
  • 共享库(Shared Object,或者Shared Library)

ELF格式提供了两种不同的视角,链接器把ELF文件看成是Section的集合,而加载器把ELF文件看成是Segment的集合。

2) bin

BIN文件是直接的二进制文件,内部没有地址标记。bin文件内部数据按照代码段或者数据段的物理空间地址来排列。一般用编程器烧写时从00开始,而如果下载运行,则下载到编译时的地址即可。

在Linux OS上,为了运行可执行文件,他们是遵循ELF格式的,通常gcc -o test test.c,生成的test文件就是ELF格式的,这样就可以运行了,执行elf文件,则内核会使用加载器来解析elf文件并执行。

在Embedded中,如果上电开始运行,没有OS系统,如果将ELF格式的文件烧写进去,包含一些ELF文件的符号表字符表之类的section,运行碰到这些,就会导致失败,如果用objcopy生成纯粹的二进制文件,去除掉符号表之类的section,只将代码段数据段保留下来,程序就可以一步一步运行。

elf文件里面包含了符号表等。BIN文件是将elf文件中的代码段,数据段,还有一些自定义的段抽取出来做成的一个内存的镜像。

并且elf文件中代码段数据段的位置并不是它实际的物理位置。他实际物理位置是在表中标记出来的。

更多嵌入式Linux干货,请关注 【一口Linux】

7. 从0学ARM-GNU伪指令、代码编译,lds使用的更多相关文章

  1. ARM GNU常用汇编语言介绍

    ARM GNU常用汇编语言介绍 ARM汇编语言源程序语句,一般由指令,伪操作,宏指令和伪指令组成. ARM汇编语言的设计基础是汇编伪指令,汇编伪操作和宏指令. 伪操作,是ARM汇编语言程序里的一些特殊 ...

  2. (转)ARM GNU常用汇编语言介绍

    ARM GNU常用汇编语言介绍 原文地址:http://zqwt.012.blog.163.com/blog/static/120446842010445441611/ ARM汇编语言源程序语句,一般 ...

  3. WEBUS2.0 In Action - [源代码] - C#代码搜索器

    最近由于工作的需要, 要分析大量C#代码, 在数万个cs文件中搜索特定关键词. 这是一项非常耗时的工作, 用Notepad++要运行接近半个小时. 于是我利用WEBUS2.0 SDK创建了一个代码搜索 ...

  4. IIS 7.0、IIS 7.5 和 IIS 8.0 中的 HTTP 状态代码 转

    http://support.microsoft.com/kb/943891/zh-cn 日志文件位置 默认情况下,IIS 7.0.IIS 7.5 和 IIS 8.0 将日志文件放在以下文件夹中: i ...

  5. ARM的启动代码(1):介绍(转)

    源:ARM的启动代码(1):介绍 很多朋友搞嵌入式,写起代码来一点问题没有,到最后上板子调试的时候,挂了.究其原因,还是对芯片的启动地址.启动方式.bootloader和操作系统的衔接出了问题.今天就 ...

  6. IIS 7.0、IIS 7.5 和 IIS 8.0 使用的 HTTP 状态代码【转载自微软官方】

    HTTP 状态代码 本部分描述 IIS 7.0.IIS 7.5 和 IIS 8.0 使用的 HTTP 状态代码. 注意 本文不会列出 HTTP 规范中所述的每个可能的 HTTP 状态代码.本文只包括 ...

  7. Joomla 3.0.0 -3.4.6远程代码执行(RCE)漏洞复现

    Joomla 3.0.0 -3.4.6远程代码执行(RCE)漏洞复现 一.漏洞描述 Joomla是一套内容管理系统,是使用PHP语言加上MYSQL数据库所开发的软件系统,最新版本为3.9.12,官网: ...

  8. 【52ABP实战教程】0.3-- 从github推送代码回vsts实现双向同步

    需求 在之前的文章中"[DevOps]如何用VSTS持续集成到Github仓库" 我们有讲述如何将vsts中的代码编译推送到github中,这一篇我们来完善,如果有人给你开源项目推 ...

  9. 痞子衡嵌入式:MCUXpresso IDE下设置代码编译优化等级的几种方法

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是MCUXpresso IDE下设置代码编译优化等级的几种方法. 最近公司芯片设计团队正在开发一款全新的基于 Cortex-M33 内核的 ...

  10. Telerik JustDecompile 2014.1.255.0 开发版(.NET反编译神器,免费下载)

    Telerik JustDecompile是Telerik公司推出一个免费的.NET反编译工具,支持插件与Visual Studio 2015~2013集成,还能够创建Visual Studio Pr ...

随机推荐

  1. 简单测下C++20 vector array lambda 的常数

    某天打了一下 CF,遇到了一道 https://codeforces.com/contest/1806/problem/E 这里需要卡常. 于是在 C++20(64) 下测出来了一些神奇的结果. 结果 ...

  2. Lfu缓存在Rust中的实现及源码解析

    一个 lfu(least frequently used/最不经常使用页置换算法 ) 缓存的实现,其核心思想是淘汰一段时间内被访问次数最少的数据项.与LRU(最近最少使用)算法不同,LFU更侧重于数据 ...

  3. hive第一课:# hive-3.1.2分布式搭建文档

    hive-3.1.2分布式搭建文档 谷歌浏览器下载网址:Google Chrome – Download the fast, secure browser from Google 华为云镜像站:htt ...

  4. 安卓Camera-HAL显示值与比例

    安卓Camera-HAL显示值与比例 参考:https://blog.csdn.net/wang714818/article/details/78049649?utm_source=blogxgwz4 ...

  5. Linux设备模型:1、设计思想

    背景 搞Linux搞这么久,一直在调试各种各样的驱动.却发现对Linux驱动有太多不够了解的地方.因此转载了 蜗窝科技 的有关文章,作为学习. 内容有少量纠正,样式有做调整. 作者:wowo 发布于: ...

  6. python基础-内置函数

    # callable() # 函数用于检查一个对象是否是可调用的.如果返回 True,object 仍然可能调用失败:但如果返回 False,调用对象 object 绝对不会成功. # 对于函数.方法 ...

  7. C# pythonnet(3)_Butter-worth低通滤波

    Python代码如下 import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import ...

  8. 【深度学习 有效炼丹】多GPU使用教程, DP与DDP对比, ray多线程并行处理等 [GPU利用率低的分析]

    ️ 前言 更新日志: 20220404:新增一个DDP 加载模型时显存分布不均问题,见目录遇到的问题及解决处 主要是上次server12 被自己一个train 直接线程全部拉满了(没错 ... ser ...

  9. JSON 的了解?

    1., JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.(为了和其他语言进行交互)2. 数据格式简单, 易于读写, 占用带宽小{'age':'12', ' ...

  10. windows 安装fvm 安装使用FVM,管理多版本flutter

    背景:win10 1,先用clash代理powershell命令,解决网络问题 2.使用dart 安装FVM dart pub global activate fvm 3.安装后检查系统环境变量 3. ...