二、如果用go语言,在 RANDOMIZED-QUICKSORT 的运行过程中,在最坏情况下,随机数生成器 RANDOM 被调用了多少次?在最好情况下呢?以θ符号的形式给出你的答案?

文心一言:

在 RANDOMIZED-QUICKSORT 的运行过程中,最坏情况下,随机数生成器 RANDOM 的调用次数为 O(n)。这是因为在最坏情况下,每次分区操作都会将数组分成大小相等的两部分,因此每次都需要从剩下的 n-1 个元素中随机选择一个元素作为主元。这样,每次分区操作都需要调用 RANDOM 函数,总共需要进行 n 次分区操作,因此 RANDOM 的调用次数为 O(n)。

在最好情况下,RANDOM 的调用次数为 O(log n)。这是因为在最好情况下,每次分区操作都会将数组分成大小为 n/2 和 n/2-1 的两部分,这样每次只需要从其中一部分中随机选择一个元素作为主元即可。这样,每次分区操作只需要调用 RANDOM 函数一次,总共需要进行 log(n) 次分区操作,因此 RANDOM 的调用次数为 O(log n)。

讯飞星火:

在最坏情况下,随机数生成器 RANDOM 被调用了 (n-1)*log2(n) + O(n) 次。在最好情况下,它被调用了 O(n) 次。

以下是用 Go 语言实现的代码:

package main

import (
"fmt"
"math"
) func partition(arr []int, low, high int) int {
pivot := arr[high]
i := low - 1
for j := low; j < high; j++ {
if arr[j] <= pivot {
i++
arr[i], arr[j] = arr[j], arr[i]
}
}
arr[i+1], arr[high] = arr[high], arr[i+1]
return i + 1
} func quickSort(arr []int, low, high int) {
if low < high {
pi := partition(arr, low, high)
quickSort(arr, low, pi-1)
quickSort(arr, pi+1, high)
}
} func randomizedQuickSort(arr []int, n int) {
randomizedPartition(arr, 0, n-1)
quickSort(arr, 0, n-1)
} func randomizedPartition(arr []int, low, high int) {
rand.Seed(time.Now().UnixNano())
pivotIndex := rand.Intn(high-low+1) + low
arr[pivotIndex], arr[high] = arr[high], arr[pivotIndex]
pivotIndex = partition(arr, low, high)
arr[pivotIndex], arr[high] = arr[high], arr[pivotIndex]
} func main() {
arr := []int{3, 8, 2, 5, 1, 4, 7, 6}
n := len(arr)
randomizedQuickSort(arr, n)
fmt.Println("Sorted array:", arr)
}

这段代码实现了随机化快速排序算法,其中 randomizedPartition 函数用于随机选择枢轴元素,并调整数组以使其有序。在最坏情况下,随机数生成器 RANDOM 被调用了 (n-1)*log2(n) + O(n) 次,而在最好情况下,它被调用了 O(n) 次。

360智脑:

在 RANDOMIZED-QUICKSORT 中,最坏情况下,每次递归调用 quicksort() 函数时都需要调用 RANDOM 生成一个随机数。因此,在最坏情况下,random() 被调用了 n! 次,其中 n 是待排序数组的大小。

以θ符号表示,最坏情况下,random() 被调用的次数为:θ(n!)。

在最好情况下,每次递归调用 quicksort() 函数时会使用数组中的一个元素作为随机数,此时 random() 被调用的次数为 n 次。

以θ符号表示,最好情况下,random() 被调用的次数为:θ(n^2)。

chatglm:

在最坏情况下,随机数生成器 RANDOM 可能会被调用 n 次,其中 n 是待排序数组的长度。这是因为在随机选择基准值时,有可能每次选择的基准值都不同,因此需要多次调用 RANDOM 函数来生成随机数。

在最好情况下,随机数生成器 RANDOM 可能会被调用 1 次或者 2 次。这是因为在随机选择基准值时,有可能第一次选择的基准值就是排序数组中的最小值或最大值,这样就不需要再次调用 RANDOM 函数了。如果第一次选择的基准值不是最小值或最大值,那么需要再次调用 RANDOM 函数来生成一个新的随机数。

因此,最坏情况下,随机数生成器 RANDOM 可能会被调用 n 次,最好情况下可能被调用 1 或 2 次。答案可以表示为:

  • 最坏情况:O(n)

  • 最好情况:O(1) 或 O(2)

通义千问:

在最坏情况下,随机数生成器RANDOM被调用了nlogn次,其中n为待排序数组的大小。在最好情况下,随机数生成器RANDOM被调用了O(1)次。

这是因为在最坏情况下,每次递归调用QUICKSORT都会将数组分成两份,其中一份的大小为n/2,另一份的大小为1。由于我们将较小的一份作为基准值,所以我们需要对较大的一份进行递归调用。这个过程会一直持续到每个子数组的大小为1,此时我们就可以直接将它们按照随机数排序。因此,总共需要进行nlogn次递归调用。

在最好情况下,每次递归调用QUICKSORT都会将数组分成两份,其中一份的大小为1,另一份的大小为n-1。由于我们将较大的一份作为基准值,所以我们只需要对较小的一份进行递归调用。由于每个子数组的大小为1,所以我们只需要对它们进行一次排序,即可得到有序数组。因此,总共需要进行O(1)次递归调用。

天工:

在最坏情况下,随机数生成器 RANDOM 会被调用 $O(\log n)$ 次,其中 $n$ 是要排序的元素数量。

在最好情况下,随机数生成器 RANDOM 会被调用 $O(1)$ 次。

因此,随机数生成器 RANDOM 在最坏情况下的平均运行时间复杂度为 $O(\log n)$,在最好情况下的平均运行时间复杂度为 $O(1)$。

chatgpt:

在随机化快速排序(RANDOMIZED-QUICKSORT)中,随机数生成器 RANDOM 在每次选择划分元素时被调用。

在最坏情况下,随机数生成器 RANDOM 被调用的次数等于递归调用的次数。当划分中选择的划分元素总是使得数组分割得非常不均衡时,最坏情况发生。

对于长度为 n 的数组,在最坏情况下,递归调用 RANDOM 的次数可以表示为递归树的高度 h,它是数组长度的对数级别。

因此,在最坏情况下,RANDOM 被调用的次数为 Θ(log n)。

在最好情况下,随机数生成器 RANDOM 仅被调用一次。当每次都能选择一个恰好平衡分割的划分元素时,最好情况发生。

因此,在最好情况下,RANDOM 被调用的次数为 Θ(1)。

综上所述:

在最坏情况下,随机数生成器 RANDOM 被调用 Θ(log n) 次。

在最好情况下,随机数生成器 RANDOM 被调用 Θ(1) 次。

总结

文心一言 VS 讯飞星火 VS chatgpt (77)-- 算法导论7.3 2题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. 2021-08-24:合并石头的最低成本。有 N 堆石头排成一排,第 i 堆中有 stones[i] 块石头。每次移动(move)需要将连续的 K 堆石头合并为一堆,而这个移动的成本为这 K 堆石头的

    2021-08-24:合并石头的最低成本.有 N 堆石头排成一排,第 i 堆中有 stones[i] 块石头.每次移动(move)需要将连续的 K 堆石头合并为一堆,而这个移动的成本为这 K 堆石头的 ...

  2. Django4全栈进阶之路6 对各类数据库连接设置

    Django 4 支持多种类型的数据库连接,包括 MySQL.PostgreSQL.SQLite.Oracle 等.对于不同类型的数据库,需要进行不同的设置.下面是 Django 4 对各类数据库连接 ...

  3. vue全家桶进阶之路45:Vue3 Element Plus el_button组件

    在 Vue 3 中,Element Plus 的 ElButton 组件提供了多种按钮类型和属性,可以用于实现不同的交互效果.下面是 ElButton 常用的作用和属性: 作用: 用于在页面上添加交互 ...

  4. Redis 高级特性 Redis Stream使用

    Redis Stream 简介 Redis Stream 是 Redis 5.0 版本新增加的数据结构. Stream从字面上看是流类型,但其实从功能上看,应该是Redis对消息队列(MQ,Messa ...

  5. Python基础 - 输入和输出

    输出   Python提供了 print() 内置函数完成输出 1 print("你好") 2 3 4 # 你好 n = "你好" print(n) # 你好 ...

  6. ODOO13之十四 :Odoo 13开发之部署和维护生产实例

    本文中将学习将 Odoo 服务器作为生产环境的基本准备.安装和维护服务器是一个复杂的话题,应该由专业人员完成.本文中所学习的不足以保证普通用户创建应对包含敏感数据和服务的健壮.安全环境. 本文旨在介绍 ...

  7. 【Python&RS】GDAL对栅格数据重采样/对齐栅格

            GDAL(Geospatial Data Abstraction Library)是一个在X/MIT许可协议下的开源栅格空间数据转换库.它利用抽象数据模型来表达所支持的各种文件格式.它 ...

  8. BGP选路

    实验拓扑 实验需求 现有三个自治系统,需要对R1访问R4的loopback-X数据走向进行精确控制: R1访问R4的loopback0走R2,通过在R1上修改本地优先级实现 R1访问R4的loopba ...

  9. 你以为搞个流水线每天跑,团队就在使用CI/CD实践了?

    在实践中,很多团队对于DevOps 流水线没有很透彻的理解,要不就创建一大堆流水线,要不就一个流水线通吃.实际上,流水线的设计和写代码一样,需要基于"业务场景"进行一定的设计编排, ...

  10. IAR学习笔记:将app和boot合并

    一.前言 最近用到了IAR编译调试软件,但是生成的app.bin和boot.bin是独立分开的,看了下IAR官方note和其他大佬的解释,找到了俩合并的方法: 参考: https://www.iar. ...