BZOJ 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列
Time Limit: 80 Sec Memory Limit: 28 MB
Submit: 1387 Solved: 400
[Submit][Status][Discuss]
Description
Input
Output
对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。
Sample Input
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4
Sample Output
0
0
2
1
1
1
0
1
2
HINT
Source
初识莫队算法,大体记录一下。
莫队算法可以用来解决一类区间询问问题,例如一道经典的例题:
给出一个序列,还有若干次询问,每次询问在区间[l,r]中有多少个数字出现了3次及3次以上。
先考虑暴力算法,不难想到对于每个询问,扫描一遍区间,用数组记录下每个数字出现的次数并及时统计出现3次及以上的数字个数,时间复杂度O(询问数*区间大小)。
再考虑高级算法,就是维护一段区间内的数字出现次数以及3次及三次以上的数字个数,区间每次可以O(1)的向某个方向(左或右)扩展一个元素,或弹出一个元素,只需要修改该数字的出现次数,并检查是否发生了从3到2或从2到3的“质变”即可。这个算法相较于上一个暴力算法并没与在复杂度上体现出什么优势,但这是莫队算法的基础。
最后看莫队算法,采用类似于分块的sqrt(n)划分方式,先将所有询问离线,按照询问的区间左端点排序,每sqrt(n)个单位长度划分为一组,注意是按照长度。然后对于每一组询问,在组内对询问按照区间右端点排序,使其单调,然后暴力处理一个组内的所有询问即可。由于左端点相距至多sqrt(n)个长度,所有每次维护的区间的左端点最多进行sqrt(n)次改变(加入元素或删除元素),而区间的右端点由于单调性质至多移动n个单位长度,全局复杂度O(n*sqrt(n)),优秀之极。
对于这道题,一开始的想法是莫队算法+树状数组(或线段树)什么的,时间复杂度O(N*sqrt(N)*log(N)),然而亲身实践之后并没有卡过去,看来出题人没有那么友好。
考虑把树状数组的O(logN)加入和O(logN)查询做一些调整,用分块的O(1)插入和O(sqrt(N))查询替代,全局复杂度降至O(NsqrtN)。
#include <bits/stdc++.h> template <class T>
inline void read(T &num) {
register int neg = false;
register int bit = getchar(); while (bit <= '') {
if (bit == '-')
neg ^= neg;
bit = getchar();
} num = ; while (bit >= '') {
num = num*
+ bit - '';
bit = getchar();
} if (neg)num = -num;
} const int N = 1e5 + ;
const int M = 1e6 + ; int n, m, s, num[N], cnt[N], sgl[N], sum[N]; /*<--- QRY --->*/ struct query {
int l, r, a, b, id, ans;
}qry[M]; inline bool cmp_lr(const query &A, const query &B) {
if (A.l / s != B.l / s)
return A.l < B.l;
else
return A.r < B.r;
} inline bool cmp_id(const query &A, const query &B) {
return A.id < B.id;
} /*<--- MO --->*/ inline int ask(int a, int b) {
if (a / s == b / s) {
int ret = ;
for (int i = a; i <= b; ++i)ret += sgl[i];
return ret;
}
else {
int ret = , lt = a / s + , rt = b / s - ;
for (int i = lt; i <= rt; ++i)ret += sum[i];
for (int i = a; i / s < lt; ++i)ret += sgl[i];
for (int i = b; i / s > rt; --i)ret += sgl[i];
return ret;
}
} inline void add(int k, int v) {
sgl[k] += v, sum[k/s] += v;
} inline void insert(int k) {
if (++cnt[k] == )add(k, );
} inline void remove(int k) {
if (--cnt[k] == )add(k, -);
} /*<--- MAIN --->*/ signed main(void) {
read(n);
read(m); s = sqrt(n); for (int i = ; i <= n; ++i)
read(num[i]); for (int i = ; i <= m; ++i) {
qry[i].id = i;
read(qry[i].l);
read(qry[i].r);
read(qry[i].a);
read(qry[i].b);
} memset(cnt, , sizeof(cnt));
memset(sum, , sizeof(sum));
memset(sgl, , sizeof(sgl)); std::sort(qry + , qry + + m, cmp_lr); for (int i = , x = , y = ; i <= m; ++i) {
while (x < qry[i].l)remove(num[x]), ++x;
while (y > qry[i].r)remove(num[y]), --y;
while (x > qry[i].l)--x, insert(num[x]);
while (y < qry[i].r)++y, insert(num[y]);
qry[i].ans = ask(qry[i].a, qry[i].b);
} std::sort(qry + , qry + + m, cmp_id); for (int i = ; i <= m; ++i)
printf("%d\n", qry[i].ans);
}
@Author: YouSiki
BZOJ 3809: Gty的二逼妹子序列的更多相关文章
- Bzoj 3809: Gty的二逼妹子序列 莫队,分块
3809: Gty的二逼妹子序列 Time Limit: 35 Sec Memory Limit: 28 MBSubmit: 868 Solved: 234[Submit][Status][Dis ...
- BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...
- BZOJ 3809 Gty的二逼妹子序列(莫队+分块)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3809 [题目大意] 给定一个长度为n(1<=n<=100000)的正整数序 ...
- bzoj 3809 Gty的二逼妹子序列——莫队+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 容易想到树状数组维护值域.但修改和查询都是 log 太慢. 考虑有 nsqrt(n) ...
- [ AHOI 2013 ] 作业 & [ BZOJ 3809 ] Gty的二逼妹子序列
\(\\\) Description 给出一个长为 \(n\) 的数列 \(A\) 和 \(k\),多次询问: 对于一个区间 \([L_i,R_i]\),问区间内有多少个数在 \([a_i,b_i]\ ...
- bzoj 3809 Gty的二逼妹子序列 —— 莫队+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3809 据说一开始应该想到莫队+树状数组,然而我想的却是莫队+权值线段树... 如果用权值线段 ...
- bzoj 3809 Gty的二逼妹子序列(莫队算法,块状链表)
[题意] 回答若干个询问,(l,r,a,b):区间[l,r]内权值在[a,b]的数有多少[种]. [思路] 考虑使用块状链表实现莫队算法中的插入与删除. 因为权值处于1..n之间,所以我们可以建一个基 ...
- BZOJ 3809: Gty的二逼妹子序列 & 3236: [Ahoi2013]作业 [莫队]
题意: 询问区间权值在$[a,b]$范围内种类数和个数 莫队 权值分块维护种类数和个数$O(1)-O(\sqrt{N})$ #include <iostream> #include < ...
- BZOJ.3809.Gty的二逼妹子序列(分块 莫队)
题目链接 /* 25832 kb 26964 ms 莫队+树状数组:增加/删除/查询 都是O(logn)的,总时间复杂度O(m*sqrt(n)*logn),卡不过 莫队+分块:这样查询虽然变成了sqr ...
随机推荐
- OC load与initialize
OC load与initialize load 当类被引用进程序的时候会执行这个函数 一个类的load方法不用写明[super load],父类就会收到调用,并且在子类之前. Category的loa ...
- ajax参数设置略解
通过ajax可以直接由页面访问到服务器.做到不刷新页面,就能刷新数据,为开发带来很大的便利. 1.ajax方式的参数及其功能: $.ajax({ type : "POST", // ...
- LoadRunner 11 安装步骤
loadrunner 安装步骤: LoadRunner11下载: 在网上可以搜索到,在这个就不提供了. LoadRunner11原理: 破解方法和以前版本相同,我用的是LR8.0的破解文件,同样实用 ...
- Java导入的项目乱码怎么解决?(Ⅱ)
1.首先 打开 >> Eclipse或Myeclipse.(我用的是Myeclipse) 2.打开 >> Window >> Preferences ...
- Attempt to fetch logical page (...) in database 2 failed. It belongs to allocation unit xxxx not to xxx
今天一个同事说在一个生产库执行某个存储过程,遇到了错误: Fatal error 605 occurred at jul 29 2014 我试着执行该存储过程,结果出现下面错误,每次执行该存储过程,得 ...
- C#:结构
1. 简单示例 // 定义结构 public struct Person { public string name; public int age; } class Program { static ...
- PostgreSQL-join多表连接查询和子查询
一.多表连接查询 1.连接方式概览 [inner] join 内连接:表A和表B以元组为单位做一个笛卡尔积,记为表C,然后在C中挑选出满足符合on 语句后边的限制条件的内容. left [outer] ...
- 编译软件基础知识(1/2) via LinuxSir
内容来自LinuxSir: 如果不出意外的话,会出现say.so => not found. 这时的./test是不能运行的.但至少说明程序运行时是需要这个库的.那为什么找不到这个库呢?那就让我 ...
- Cmake的交叉编译
http://www.cmake.org/Wiki/CMake_Cross_Compiling
- 使用Office 365抓取PM2.5数据
近日微软发布了Microsoft Flow,一个类似IFTTT自动化任务触发工具.例如,我们可以设置这样一个触发事件和对应的处理过程:当有人在微博上@我的时候,发一封邮件通知我:当我关注的博主有新文章 ...