NC24416 [USACO 2013 Nov G]No Change
题目
题目描述
Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return!
Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.
输入描述
Line 1: Two integers, K and N.
Lines 2..1+K: Each line contains the amount of money of one of FJ's
coins.Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended
purchases.
输出描述
- Line 1: The maximum amount of money FJ can end up with, or -1 if FJ
cannot complete all of his purchases.
示例1
输入
3 6
12
15
10
6
3
3
2
3
7
输出
12
说明
INPUT DETAILS:
FJ has 3 coins of values 12, 15, and 10. He must make purchases in
sequence of value 6, 3, 3, 2, 3, and 7.
OUTPUT DETAILS:
FJ spends his 10-unit coin on the first two purchases, then the 15-unit
coin on the remaining purchases. This leaves him with the 12-unit coin.
题解
知识点:状压dp,二分。
先前缀和货物价值,方便查找加能到达的不大于上一次价值加上硬币价值的最大货物价值,之后就是个TSP解法。
时间复杂度 \(O(m2^m\log n)\)
空间复杂度 \(O(n+2^m)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int c[20], a[100007], dp[(1 << 16) + 7];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int m, n;
cin >> m >> n;
for (int i = 1;i <= m;i++) cin >> c[i];
for (int i = 1;i <= n;i++) cin >> a[i], a[i] += a[i - 1];
ll ans = -1;
for (int i = 0;i < (1 << m);i++) {
ll sum = 0;
for (int j = 1;j <= m;j++) {
if (!(i & (1 << (j - 1)))) {
sum += c[j];
continue;
}
int k = upper_bound(a + 1, a + n + 1, a[dp[i ^ (1 << (j - 1))]] + c[j]) - a - 1;
dp[i] = max(dp[i], k);
}
if (dp[i] == n) ans = max(ans, sum);
}
cout << ans << '\n';
return 0;
}
NC24416 [USACO 2013 Nov G]No Change的更多相关文章
- USACO翻译:USACO 2013 NOV Silver三题
USACO 2013 NOV SILVER 一.题目概览 中文题目名称 未有的奶牛 拥挤的奶牛 弹簧牛 英文题目名称 nocow crowded pogocow 可执行文件名 nocow crowde ...
- NC25025 [USACO 2007 Nov G]Sunscreen
NC25025 [USACO 2007 Nov G]Sunscreen 题目 题目描述 To avoid unsightly burns while tanning, each of the \(C\ ...
- USACO 2013 Nov Silver Pogo-Cow
最近因为闲的蛋疼(停课了),所以开始做一些 USACO 的银组题.被完虐啊 TAT 貌似 Pogo-Cow 这题是 2013 Nov Silver 唯一一道可说的题目? Pogo-Cow Descri ...
- usaco No Change, 2013 Nov 不找零(二分查找+状压dp)
Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci 元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身 ...
- USACO翻译:USACO 2013 DEC Silver三题
USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...
- USACO翻译:USACO 2013 JAN三题(1)
USACO 2013 JAN 一.题目概览 中文题目名称 镜子 栅栏油漆 奶牛排队 英文题目名称 mirrors paint lineup 可执行文件名 mirrors paint lineup 输入 ...
- The Ninth Hunan Collegiate Programming Contest (2013) Problem G
Problem G Good Teacher I want to be a good teacher, so at least I need to remember all the student n ...
- [USACO 2011 Nov Gold] Cow Steeplechase【二分图】
传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=93 很容易发现,这是一个二分图的模型.竖直线是X集,水平线是Y集,若某条竖 ...
- Day Tip:SharePoint 2013 *.ascx.g.cs文件
在开发SharePoint2013的WebPart时,会产生一个*.ascx.g.cs文件.如果用TFS管理源代码经常遇到这个文件丢失.这让人很困扰,如果丢失了请在如下图中添加如下代码: ...
- 2013长沙 G Graph Reconstruction (Havel-Hakimi定理)
Graph Reconstruction Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge Let there ...
随机推荐
- [转帖]一文深度讲解JVM 内存分析工具 MAT及实践(建议收藏)
https://juejin.cn/post/6911624328472133646 1. 前言 熟练掌握 MAT 是 Java 高手的必备能力,但实践时大家往往需面对众多功能,眼花缭乱不知如何下手, ...
- [转帖]TiDB 配置参数修改与系统变量修改步骤
https://tidb.net/blog/bda86911 注意事项1:tidb-test 为集群名称 注意事项2:参数修改前与修改后备份.tiup目录 注意事项3:通过 tiup cl ...
- [转帖]CentOS-7-x86_64-DVD-2009 rpm包列表(centos7.9)
https://www.cnblogs.com/hiyang/p/14803391.html 文件数 4071 个,共3.8G 复制389-ds-base-1.3.10.2-6.el7.x86_64. ...
- 【转帖】68.记忆集(remembered set)和写屏障(write barrier)
目录 1.记忆集(`remembered set`) 1.记忆集(remembered set) 问题:G1将堆区划分成多个region,一个region不可能是独立的,它其中存储的对象可能被其他任意 ...
- [转帖]IPv6地址解析库,窥探IPv6地址中包含的信息
https://zhuanlan.zhihu.com/p/479028720 大家好,我是明说网络的小明同学. 今天和大家介绍一个IPv6 地址解析库IPv6 address Parser :http ...
- [转帖]一口气看完45个寄存器,CPU核心技术大揭秘
https://www.cnblogs.com/xuanyuan/p/13850548.html 序言 前段时间,我连续写了十来篇CPU底层系列技术故事文章,有不少读者私信我让我写一下CPU的寄存器. ...
- Mysql Server System Variables [官网资料]
5.1.7 Server System Variables The MySQL server maintains many system variables that configure its op ...
- kubeadm 搭建 k8s 时用到的常用命令汇总
简单记录一下 kubeadm config images list 修改镜像名称 docker tag registry.cn-hangzhou.aliyuncs.com/google_contain ...
- WebAssembly入门笔记[2]:利用Memory传递数据
利用灵活的"导入"和"导出"机制,WebAssembly与承载的JavaScript应用之间可以很便利地"互通有无".<与JavaSc ...
- 京东小程序CI工具实践
作者:京东物流 张俊峰 本文从整体介绍了京东小程序CI工具的用途及工作流程,读者可以通过本文了解到一种全新的京东小程序上传方式,同时结合构建脚本和流水线,可大大提高小程序的部署和发布效率. 01 前言 ...