NC24416 [USACO 2013 Nov G]No Change
题目
题目描述
Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return!
Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.
输入描述
Line 1: Two integers, K and N.
Lines 2..1+K: Each line contains the amount of money of one of FJ's
coins.Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended
purchases.
输出描述
- Line 1: The maximum amount of money FJ can end up with, or -1 if FJ
cannot complete all of his purchases.
示例1
输入
3 6
12
15
10
6
3
3
2
3
7
输出
12
说明
INPUT DETAILS:
FJ has 3 coins of values 12, 15, and 10. He must make purchases in
sequence of value 6, 3, 3, 2, 3, and 7.
OUTPUT DETAILS:
FJ spends his 10-unit coin on the first two purchases, then the 15-unit
coin on the remaining purchases. This leaves him with the 12-unit coin.
题解
知识点:状压dp,二分。
先前缀和货物价值,方便查找加能到达的不大于上一次价值加上硬币价值的最大货物价值,之后就是个TSP解法。
时间复杂度 \(O(m2^m\log n)\)
空间复杂度 \(O(n+2^m)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int c[20], a[100007], dp[(1 << 16) + 7];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int m, n;
cin >> m >> n;
for (int i = 1;i <= m;i++) cin >> c[i];
for (int i = 1;i <= n;i++) cin >> a[i], a[i] += a[i - 1];
ll ans = -1;
for (int i = 0;i < (1 << m);i++) {
ll sum = 0;
for (int j = 1;j <= m;j++) {
if (!(i & (1 << (j - 1)))) {
sum += c[j];
continue;
}
int k = upper_bound(a + 1, a + n + 1, a[dp[i ^ (1 << (j - 1))]] + c[j]) - a - 1;
dp[i] = max(dp[i], k);
}
if (dp[i] == n) ans = max(ans, sum);
}
cout << ans << '\n';
return 0;
}
NC24416 [USACO 2013 Nov G]No Change的更多相关文章
- USACO翻译:USACO 2013 NOV Silver三题
USACO 2013 NOV SILVER 一.题目概览 中文题目名称 未有的奶牛 拥挤的奶牛 弹簧牛 英文题目名称 nocow crowded pogocow 可执行文件名 nocow crowde ...
- NC25025 [USACO 2007 Nov G]Sunscreen
NC25025 [USACO 2007 Nov G]Sunscreen 题目 题目描述 To avoid unsightly burns while tanning, each of the \(C\ ...
- USACO 2013 Nov Silver Pogo-Cow
最近因为闲的蛋疼(停课了),所以开始做一些 USACO 的银组题.被完虐啊 TAT 貌似 Pogo-Cow 这题是 2013 Nov Silver 唯一一道可说的题目? Pogo-Cow Descri ...
- usaco No Change, 2013 Nov 不找零(二分查找+状压dp)
Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci 元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身 ...
- USACO翻译:USACO 2013 DEC Silver三题
USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...
- USACO翻译:USACO 2013 JAN三题(1)
USACO 2013 JAN 一.题目概览 中文题目名称 镜子 栅栏油漆 奶牛排队 英文题目名称 mirrors paint lineup 可执行文件名 mirrors paint lineup 输入 ...
- The Ninth Hunan Collegiate Programming Contest (2013) Problem G
Problem G Good Teacher I want to be a good teacher, so at least I need to remember all the student n ...
- [USACO 2011 Nov Gold] Cow Steeplechase【二分图】
传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=93 很容易发现,这是一个二分图的模型.竖直线是X集,水平线是Y集,若某条竖 ...
- Day Tip:SharePoint 2013 *.ascx.g.cs文件
在开发SharePoint2013的WebPart时,会产生一个*.ascx.g.cs文件.如果用TFS管理源代码经常遇到这个文件丢失.这让人很困扰,如果丢失了请在如下图中添加如下代码: ...
- 2013长沙 G Graph Reconstruction (Havel-Hakimi定理)
Graph Reconstruction Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge Let there ...
随机推荐
- 使用VS开发人员工具观察类在内存中的布局
1.先要生成相应文件 2.打开VS2019开发人员工具 3.cd至文件目录 4.输入cl /d1 reportSingleClassLayoutanimal demo.cpp 其中reportSing ...
- [STM32H7] 实战技能分享,如何让工程代码各种优化等级通吃,含MDK AC5,AC6,IAR和GCC
引出问题: 一个好的工程项目代码,特别是开源类的,如果能做到各种优化等级通吃,是一种非常好的工程案例,这样别人借鉴的时候,可以方便的适配到自己工程里.但实际项目中,针对一款产品代码,我们一般不会 ...
- NodeJS安装指南(Mac)
nvm,node,npm之间的区别 nvm:nodejs 版本管理工具. 也就是说:一个 nvm 可以管理很多 node 版本和 npm 版本. nodejs:在项目开发时的所需要的代码库 npm:n ...
- [转帖]RHEL/CentOS 7中的网络暨network.service与NetworkManager.service详解
在RHEL/CentOS 6及以前的版本中,网络功能是通过一系列网络相关的脚本文件实现,如/etc/init.d/network文件,及如下/sbin/if*文件等. [root@myserver ~ ...
- [转帖]umount -fl用法
https://www.cnblogs.com/xingmuxin/p/8446178.html umount, 老是提示:device is busy, 服务又不能停止的.可以用"umou ...
- [转帖]TiDB的tikv节点的压缩算法
简介:TiDB的tikv节点实用的RocksDB,RocksDB的默认压缩算法为:[no:no:lz4:lz4:lz4:zstd:zstd] RocksDB 每一层数据的压缩方式,可选的值为:no,s ...
- [转帖]Nginx动静分离;资源分离;rewrite重写、跳转、伪静态、规则、日志
https://www.cnblogs.com/caodan01/p/14745562.html 一.动静分离 动静分离,通过中间件将动静请求和静态请求进行分离: 通过中间件将动态请求和静态请求分离, ...
- ebpf 单行程序学习
ebpf 单行程序学习 背景 公司方神借给我一本: <BPF之巅:洞悉linux系统和应用性能>纸质书 拿回家晚上在沙发上看了几天. 感觉书很厚看的不是很系统. 仅能凭自己的感觉总结一下这 ...
- [转帖]Python基础之文件处理(二)
https://www.jianshu.com/p/7dd08066f499 Python基础文件处理 python系列文档都是基于python3 一.字符编码 在python2默认编码是ASCII, ...
- [转帖]linux shell 脚本一些主要知识点整理
文章目录 一./bin/sh 与 /bin/bash 的区别 二.vi与vim的区别 三.shell变量 四.Shell字符串 五.Shell函数 六.Shell基本运算符 1.Shell expr: ...