一、多线程

在CPU不密集、IO密集的任务下,多线程可以一定程度的提升运行效率。

import threading
import time
import requests def fetch_url(url: str)->None:
'''根据地址发起请求,获取响应
- url: 请求地址'''
response = requests.get(url)
print(f"{url}: {response.status_code}") def fetch_urls_sequential(urls:list)->None:
start_time = time.time()
for url in urls:
fetch_url(url)
end_time = time.time()
print(f"使用单线程时间为: {end_time - start_time} 秒\n") def fetch_urls_concurrent(urls:list)->None:
start_time = time.time()
threads = []
for url in urls:
thread = threading.Thread(target=fetch_url, args=(url,))
threads.append(thread)
thread.start() for thread in threads:
thread.join()
end_time = time.time()
print(f"使用多线程时间为: {end_time - start_time} 秒") if __name__ == "__main__":
urls = ["http://www.example.com"]*10
fetch_urls_sequential(urls)
fetch_urls_concurrent(urls)

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

使用单线程时间为: 10.178432703018188 秒

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

http://www.example.com: 200

使用多线程时间为: 0.5794060230255127 秒

可以看到在IO密集型任务时,排除极端情况,使用多线程可以很大的提升程序的性能。例如在这个例子中,响应时间就相差了8倍多。

虽然在Python中有GIL保护机制,但是依然需要注意线程安全。例如(共享数据、共享设备、非原子性操作等)。可以使用锁机制、信号机制、队列、管道等等。

二、协程

协程也叫轻量级线程,协程是一种在单一线程内实现并发编程的技术。它们允许函数在执行过程中暂停,并在稍后恢复,从而使得多个任务能够交替执行,而不需要多个操作系统线程的开销。协程通过让出控制权来暂停执行,等待其他协程运行,然后在适当的时候恢复执行。

区别 线程 协程
上下文切换 线程上下文切换由操作系统决定,消耗更大 协程的上下文切换由用户自己决定,消耗更小
并发 线程是抢占式的,操作系统可以随时中断线程调度了一个线程 协程是协程式的,需要主动让出控制权时,才会进行任务切换
开销 创建线程和销毁线程,造成很大的开销 基于单线程的,并且协程是轻量级的,不会消耗大量资源。

协程的优势在于能够更高效地利用系统资源,在执行多个任务时能够充分利用CPU的性能。相比之下,并发执行的多个协程可以在单个线程内非阻塞地交替执行,从而减少了线程切换和上下文切换的开销,提高了整体的执行效率。

所以协程本身并不会直接提升单个任务的运行时间,但是,如果一个任务可以分解为多个步骤,并且这些步骤之间存在依赖关系,那么使用协程来执行这些步骤会更快。因为在等待I/O操作或其他异步操作完成时,协程可以让出CPU控制权,允许其他协程继续执行,从而最大程度地减少了等待时间。

例如从网站下载页面内容,并且计算页面内容。这就是单任务多步骤,这种情况就可以体现出协程的优势(性能、运行时间都会提升)。

import asyncio
import threading
import aiohttp
import time
import requests async def fetch_page(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text() async def compute_length(url):
page = await fetch_page(url)
return len(page) async def async_main():
urls = ["http://www.example.com"]*10
tasks = [compute_length(url) for url in urls]
results = await asyncio.gather(*tasks)
print("内容长度为:", results) def thread_fetch_page(url):
response = requests.get(url)
return response.text
def thread_compute_length(url):
page = thread_fetch_page(url)
return len(page)
def thread_main():
urls = ["http://www.example.com"]*10
threads = []
results = []
start_time = time.time()
for url in urls:
thread = threading.Thread(target=lambda u: results.append(thread_compute_length(u)), args=(url,))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
end_time = time.time()
print("内容长度为:", results)
print(f"使用多线程时间为: {end_time - start_time} 秒") if __name__ == "__main__":
start_time = time.time()
asyncio.run(async_main())
end_time = time.time()
print(f"使用协程时间为: {end_time - start_time} 秒")
thread_main()

内容长度为: [1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256]

使用协程时间为: 0.5775842666625977 秒

内容长度为: [1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256, 1256]

使用多线程时间为: 5.595600128173828 秒

可以看到这里的协程的运行时间提升了很多,因为是单任务多步骤,类似于流水线的方式,所以协程的速度会快很多。并且这里使用协程是单线程的,开销更小;而多线程这里使用了10个线程,开销更大。

三、多进程

如果任务主要由 CPU 运算组成(CPU密集型任务),而不涉及太多的 I/O 操作,那么多进程通常比多线程更适合,因为多进程能够利用多核处理器的全部性能,每个进程独立运行在自己的地址空间中,避开了 GIL 的限制。

例如大规模的计算,这种耗时的计算也是CPU密集型任务,使用多进程能明显的提升性能。

这里举例计算大规模积分

import multiprocessing
import threading
import numpy as np
import time def integrate(f, a, b, N):
"""使用梯形法则计算f在区间[a, b]上的积分,N为分割数"""
x = np.linspace(a, b, N)
y = f(x)
dx = (b - a) / (N - 1)
return np.trapz(y, dx=dx) def f(x):
'''计算积分'''
return np.sin(x) * np.exp(-x) def integrate_range(start, end, result, index):
result[index] = integrate(f, start, end, 100000000) def thread_main():
result = [None] * 4
threads = []
ranges = [(0, 5), (5, 10), (10, 15), (15, 20)] start_time = time.time() for i, (start, end) in enumerate(ranges):
thread = threading.Thread(target=integrate_range, args=(start, end, result, i))
threads.append(thread)
thread.start() for thread in threads:
thread.join() end_time = time.time()
print(f"多线程使用时间为: {end_time - start_time} 秒")
print(f"积分结果: {result}\n")
def multiprocess_main():
manager = multiprocessing.Manager()
result = manager.list([None] * 4)
processes = []
ranges = [(0, 5), (5, 10), (10, 15), (15, 20)]
start_time = time.time() for i, (start, end) in enumerate(ranges):
process = multiprocessing.Process(target=integrate_range, args=(start, end, result, i))
processes.append(process)
process.start() for process in processes:
process.join() end_time = time.time()
print(f"多进程使用时间为: {end_time - start_time} 秒")
print(f"积分结果: {result}") if __name__ == "__main__":
thread_main()
multiprocess_main()

多线程使用时间为: 7.396134853363037 秒

积分结果: [0.5022749400837572, -0.0022435439294056455, -3.1379421486677834e-05, -1.809428816655182e-08]

多进程使用时间为: 4.97518515586853 秒

积分结果: [0.5022749400837572, -0.0022435439294056455, -3.1379421486677834e-05, -1.809428816655182e-08]

可以看到这里的区别还是很大的,如果数据量更大,那么进程的优势会更明显。因为如果计算的时间过快,那么线程可以很快的进行切换。所以在大规模计算时,才可以体现出进程的优势。

四、总结

特性 进程 线程 协程
创建开销 极小
切换开销 极小
内存共享 不共享 共享 共享
通信方式 管道、队列等 共享内存 直接调用
多核利用 受GIL影响
使用场景 CPU密集型任务 IO密集型任务 高并发IO密集型任务
复杂度 较高 较低 依赖异步编程。较高

1、进程(Process)

  • 定义:进程是操作系统分配资源和调度的基本单位。每个进程拥有独立的内存空间、文件描述符和其他资源。

  • 优点:

    • 独立性:进程之间相互独立,不会直接影响彼此的运行,崩溃一个进程不会影响其他进程。
    • 利用多核:能够充分利用多核 CPU 的优势,每个进程可以在不同的 CPU 核心上并行运行。
  • 缺点:

    • 开销大:进程创建和销毁的开销较大,包括内存空间、文件句柄等资源。
    • 通信复杂:进程间通信(IPC)比较复杂,常用的 IPC 机制包括管道、消息队列、共享内存等。
  • 使用场景:

    • CPU 密集型任务,计算量大且需要充分利用多核 CPU 性能。
    • 需要高可靠性的任务,进程隔离可以防止任务间相互影响。

2、线程(Thread)

  • 定义:线程是进程中的一个执行流,是 CPU 调度和执行的基本单位。线程共享进程的内存和资源。

  • 优点:

    • 轻量级:创建和销毁线程的开销较小,线程之间的上下文切换开销比进程小。
    • 共享内存:同一进程的线程共享内存和资源,数据交换和通信更方便。
  • 缺点:

    • GIL 限制:在 Python 中,由于全局解释器锁(GIL),多线程在同一时间只能有一个线程执行 Python 字节码,限制了多线程在 CPU 密集型任务中的性能提升。
    • 线程安全:共享数据时需要小心处理线程同步问题,避免数据竞争、死锁等问题。
  • 使用场景:

    • I/O 密集型任务,如文件读写、网络请求等,可以在等待 I/O 完成时切换线程,提升效率。
    • 任务之间需要频繁的数据共享和通信的场景。

3、协程(Coroutine)

  • 定义:协程是一种更轻量级的并发执行方式,协程在用户空间内实现切换,由程序自身控制,不依赖操作系统的调度。

  • 优点:

    • 极轻量:协程的创建和切换开销极小,适合大量并发任务。
    • 无锁编程:协程之间通常不需要锁机制,因为协程在同一个线程中执行,不存在多线程的竞争问题。
    • 高效利用 I/O 等待:协程特别适合 I/O 密集型任务,可以在 I/O 等待时切换到其他协程执行。
  • 缺点:

    • 单线程限制:协程在单线程中执行,无法利用多核 CPU 的优势。
    • 需要异步编程支持:需要语言和框架的异步支持,编写异步代码较为复杂。
  • 使用场景:

    • 高并发的 I/O 密集型任务,如大量的网络请求处理、Web 服务器等。
    • 需要大量并发但任务之间独立性较高的场景。

基于Python的性能优化的更多相关文章

  1. Python 代码性能优化技巧(转)

    原文:Python 代码性能优化技巧 Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化. ...

  2. 基于python的opcode优化和模块按需加载机制研究(学习与个人思路)(原创)

    基于python的opcode优化和模块按需加载机制研究(学习与思考) 姓名:XXX 学校信息:XXX 主用编程语言:python3.5 个人技术博客:http://www.cnblogs.com/M ...

  3. [转] Python 代码性能优化技巧

    选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化 ...

  4. Python代码性能优化技巧

    摘要:代码优化能够让程序运行更快,可以提高程序的执行效率等,对于一名软件开发人员来说,如何优化代码,从哪里入手进行优化?这些都是他们十分关心的问题.本文着重讲了如何优化Python代码,看完一定会让你 ...

  5. Python 代码性能优化技巧

    选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化 ...

  6. 基于GruntJS前端性能优化

    在本文中,如何使用GruntJS为了使治疗简单的前端性能优化自己主动,我写了一个完整的样本放在Github上.能够參考一下.关于Yahoo的前端优化规则请參考:Best Practices for S ...

  7. 基于Yahoo网站性能优化的34条军规及自己的见解

    1.尽量减少HTTP请求次数 终端用户响应的时间中,有80%用于下载各项内容,这部分时间包括下载页面中的图像.样式表.脚本.Flash等.通过减少页面中的元素可以减少HTTP请求的次数,这是提高网页速 ...

  8. [看图说话] 基于Spark UI性能优化与调试——初级篇

    Spark有几种部署的模式,单机版.集群版等等,平时单机版在数据量不大的时候可以跟传统的java程序一样进行断电调试.但是在集群上调试就比较麻烦了...远程断点不太方便,只能通过Log的形式,进行分析 ...

  9. CentOS 7 Tomcat 8 9 基于APR库性能优化

    Tomcat可以使用Apache Portable Runtime来提供卓越的性能及可扩展性,更好地与本地服务器技术的集成.Apache Portable Runtime是一个高度可移植的库,位于Ap ...

  10. 基于linux(CentOS7)数据库性能优化(Postgresql)

    基于CentOS7数据库性能优化(Postgresql) 1.  磁盘 a)         Barriers IO i.              通过查看linux是否加载libata,确定是否开 ...

随机推荐

  1. QImage:使用QImage构造函数加载图像和使用成员函数loadFromData加载图像的区别

    结论: QImage构造函数,既可以加载内存图像数据,也可以加载二进制文件数据 loadFromData成员函数,只能加载二进制文件数据 loadFromData Qt帮助文档说明 编写测试代码验证 ...

  2. Python设计模式----3.单例模式

    单例模式:主要目的是确保某一个类只有一个实例存在 代码: class A(): def __new__(self, *args, **kwargs): if not hasattr(self, 'na ...

  3. HarmonyOS应用事件打点开发指导

      简介 传统的日志系统里汇聚了整个设备上所有程序运行的过程流水日志,难以识别其中的关键信息.因此,应用开发者需要一种数据打点机制,用来评估如访问数.日活.用户操作习惯以及影响用户使用的关键因素等关键 ...

  4. js 实现双指缩放

    前言随着智能手机.平板电脑等触控设备的普及,交互方式也发生了改变.相对于使用鼠标和键盘进行交互的电脑,触控设备可以直接使用手指进行交互,而且基本上都支持多点触控.多点触控最常见的操作莫过于双指缩放了. ...

  5. 如何使用鞋厂ERP等企业管理软件提高企业运营整体效率?

    ERP把企业客户需求.市场规划.产品研发.内部制造等活动以及供应商的资源整合在一起,形成企业一个完整的产业链和供应链,通过企业多个环节的无缝链接和整体运作来提高企业运营整体效率: (1) . 对整个产 ...

  6. BURP保存多个监听器配置

    "感谢您阅读本篇博客!如果您觉得本文对您有所帮助或启发,请不吝点赞和分享给更多的朋友.您的支持是我持续创作的动力,也欢迎留言交流,让我们一起探讨技术,共同成长!谢谢!" 前言 在进 ...

  7. 【笔记】Java相关大杂烩①

    [笔记]Java相关大杂烩 Java 程序的执行流程是? *.java 文件-->*.class 文件-->类装载器-->字节码校验器-->解释器-->操作系统平台 Ja ...

  8. 力扣539(java)-最小时间差(中等)

    题目: 给定一个 24 小时制(小时:分钟 "HH:MM")的时间列表,找出列表中任意两个时间的最小时间差并以分钟数表示. 示例 1: 输入:timePoints = [" ...

  9. Apache Flink 在实时金融数据湖的应用

    简介: 本文由京东搜索算法架构团队分享,主要介绍 Apache Flink 在京东商品搜索排序在线学习中的应用实践 一.背景 在京东的商品搜索排序中,经常会遇到搜索结果多样性不足导致系统非最优解的问题 ...

  10. 10亿+文件数压测,阿里云JindoFS轻松应对

    简介: Apache Hadoop FileSystem (HDFS) 是被广为使用的大数据存储方案,其核心元数据服务 NameNode 将全部元数据存放在内存中,因此所能承载的元数据规模受限于内存, ...