首先声明,LightGBM是针对大规模数据(样本量多,特征多)时,对XGBoost算法进行了一些优化,使得速度有大幅度提高,但由于优化方法得当,而精度没有减少很多或者变化不大,理论上还是一个以精度换速度的目的。如果数据量不大,那就对XGBoost没有什么优势了。

我认为有这几点:

1.GOSS(Gradient-based One-Side Sampling),基于梯度的单侧采样,对训练样本的采样。

如原始训练数据100w,高梯度数据有1w,那么会计算 1w+随机选择b%*余下的99w数据,然后把后部分数据进行加倍(*(1-a)/b),基于这些数据来得到特征的切分点。

2.EFB(Exclusive Feature Bundling),排斥特征整合,通过对某些特征整合来降低特征数量。

上面两点是在原论文中多次提到的,主要的不同。

参考原论文:https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

其它的我认为还有两点:

3.查找连续变量 切分点 的方法

XGBoost默认使用的是pre-sorted algorithm,即先将连续变量排序,然后从前向后计算每个切分点后的信息增益,这样算法复杂度是#data*#feature。好像也可以支持使用histogram。

LightGBM使用的是histogram-based algorithms,即将连续值先bin成k箱,然后再求切分点,每次计算切分点的复杂度是#k*#feature,但这样会有一些精度损失。但由于,a粗精度可以相当于正则化的效果,防止过拟合。b单棵树的精度可能会差一些,但在gbdt框架下,总体的效果不一定差。c在gbdt中决策树是弱模型,精度不高影响也不大。

4.树的生长方式

XGBoost是level(depdh)-wise,即左右子树都是一样深的,要生长一块生长,要停一块停。

LightGBM是leaf-wise,即可能左右子树是不一样深的,即使左子树已经比右子树深很多,但只要左子树的梯度划分仍然比右子树占优,就继续在左子树进行划分。

5、对类别特征的支持

实际上大多数机器学习工具都无法直接支持类别特征,一般需要把类别特征,转化到多维的0/1 特征,降低了空间和时间的效率。而类别特征的使用是在实践中很常用的。基于这个考虑,LightGBM 优化了对类别特征的支持,可以直接输入类别特征,不需要额外的0/1 展开。并在决策树算法上增加了类别特征的决策规则。在 Expo 数据集上的实验,相比0/1 展开的方法,训练速度可以加速 8 倍,并且精度一致。据我们所知,LightGBM 是第一个直接支持类别特征的 GBDT 工具。
参考:https://blog.csdn.net/friyal/article/details/82756777

lightGBM原理

LightGBM和XGBoost的区别?的更多相关文章

  1. 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别

    目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...

  2. LightGBM大战XGBoost,谁将夺得桂冠?

    引 言 如果你是一个机器学习社区的活跃成员,你一定知道 提升机器(Boosting Machine)以及它们的能力.提升机器从AdaBoost发展到目前最流行的XGBoost.XGBoost实际上已经 ...

  3. GBDT XGBOOST的区别与联系

    Xgboost是GB算法的高效实现,xgboost中的基学习器除了可以是CART(gbtree)也可以是线性分类器(gblinear). 传统GBDT以CART作为基分类器,xgboost还支持线性分 ...

  4. 机器学习算法中GBDT和XGBOOST的区别有哪些

    首先xgboost是Gradient Boosting的一种高效系统实现,并不是一种单一算法.xgboost里面的基学习器除了用tree(gbtree),也可用线性分类器(gblinear).而GBD ...

  5. RF,GBDT,XGBoost,lightGBM的对比

    转载地址:https://blog.csdn.net/u014248127/article/details/79015803 RF,GBDT,XGBoost,lightGBM都属于集成学习(Ensem ...

  6. XGBoost、LightGBM、Catboost总结

    sklearn集成方法 bagging 常见变体(按照样本采样方式的不同划分) Pasting:直接从样本集里随机抽取的到训练样本子集 Bagging:自助采样(有放回的抽样)得到训练子集 Rando ...

  7. 机器学习-树模型理论(GDBT,xgboost,lightBoost,随机森林)

    tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法 ...

  8. xgboost gbdt特征点分烈点

    lightGBM与XGBoost的区别:(来源于:http://baijiahao.baidu.com/s?id=1588002707760744935&wfr=spider&for= ...

  9. L2R 三:常用工具包介绍之 XGBoost与LightGBM

    L2R最常用的包就是XGBoost 和LightGBM,xgboost因为其性能及快速处理能力,在机器学习比赛中成为常用的开源工具包, 2016年微软开源了旗下的lightgbm(插句题外话:微软的人 ...

随机推荐

  1. redis(二)----基本操作

    1. redis介绍 redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset( ...

  2. CF940F Machine Learning(带修莫队)

    首先显然应该把数组离散化,然后发现是个带修莫队裸题,但是求mex比较讨厌,怎么办?其实可以这样求:记录每个数出现的次数,以及出现次数的出现次数.至于求mex,直接暴力扫最小的出现次数的出现次数为0的正 ...

  3. SpringCloud----服务注册中心Eureka

    Eureka是Netflix开源的一个RESTful服务,主要用于服务的注册发现.Eureka由两个组件组成:Eureka服务器和Eureka客户端.Eureka服务器用作服务注册服务器.Eureka ...

  4. CodeForces - 686D 【树的重心】

    传送门:http://codeforces.com/problemset/problem/686/D 题意:给你n个节点,其中1为根, 第二行给你2~n的节点的父亲节点编号. 然后是q个询问,求询问的 ...

  5. requests.get()///post函数///base64函数

    1.requests.get() 一般的用法:r=requests.get(url) 或者是用上session: r=requests.session() r=r.get(url) get()收集的是 ...

  6. html+css 通信课上 2019。3.22

    数据通信 http协议:无状态.无连接.单向的应用层协议:采用请求/响应模型:通信请求只能由客户端发起,服务端对请求做出应答处理 服务器推送数据的解决方案:轮询( ajax) :让浏览器几秒就发送一次 ...

  7. 关于PHP索引数组unset某key后json_encode相关问题踩坑记录

    <?php $a = [1,2,3]; var_dump(json_encode($a)); #string(7) "[1,2,3]" unset($a[0]); var_d ...

  8. Python创建命令行应用的工具 tools for command line application in python

    工具1:Docopt 地址:http://docopt.org/ 这个工具是根据模块的文档注释来确定参数的.注释分为两部分:Usage, option. \``` Usage: naval_fate ...

  9. HGP|VCG|UK10K|中科院职业人群队列研究计划|药物基因组学

    全球性计划:表观组计划:肝计划 测1000人的变异level HGP计划三个阶段,范围逐步扩大和深化. Pilot:deep sequence---low coverage Phase 1 Phase ...

  10. c语言:函数的递归调用

    c语言可以将代码模块化,这是其很重要的一个特性. 说道代码模块化,我们很自然的就会联想到函数.而函数中,比较难的一个知识点就是函数的递归调用. 值得注意的是,函数的递归调用在现实工作并不是很常用,但是 ...