一.线性表的顺序存储

typedef int ElemType;
typedef struct List
{
ElemType *data;//动态分配 ,需要申请空间
int length;
}List;

0.完整代码

#include <stdio.h>
#include <stdlib.h>
#define MaxSize 50
#define TRUE 1
#define FALSE 0
typedef int ElemType ;
struct List
{
ElemType *data;//动态分配 ,需要申请空间
int length;
}; void InitList(List *p);//初始化表
int ListInsert(List *p,int i,ElemType e);//插入操作 (前插),在第i个位置插入数据e
int ListDelete(List *p,int i);//删除操作,删除第i个位置数据
int ListFindValue(List L,ElemType e);//按值查找元素e ,返回e在顺序表表的位置
int ListFindLocate(List L,int i);//按位查找第i位的值
int Empty(List L); //判空,如果表为空返回TRUE
void PrintList(List L);//输出操作 int main()
{
List L;
InitList(&L);
ListInsert(&L,,);
ListInsert(&L,,);
ListInsert(&L,,);
ListInsert(&L,,);
ListInsert(&L,,);
PrintList(L);
return ;
} void InitList(List *p)
{
p->data=(ElemType*)malloc(sizeof(ElemType)*MaxSize);
p->length=;
} int ListInsert(List *p,int i,ElemType e)
{
if(i< || i>p->length+)
{
return FALSE;//插入位置不合法
}
if(p->length>=MaxSize)
{
return FALSE;//顺序表已满
}
for(int j=p->length;j>=i;j--)
{
p->data[j]=p->data[j-];
}
p->data[i-]=e;
p->length++;
return TRUE;
} int ListDelete(List *p,int i)
{
if(i< || i>p->length)
{
return FALSE;
}
for(int j=i;j<p->length;j++)
{
p->data[j-]=p->data[j];
}
p->length--;
return TRUE;
} int ListFindValue(List L,ElemType e)
{
for(int i=;i<L.length;i++)
{
if(L.data[i]==e)
{
return i+;
}
}
return FALSE;
} int ListFindLocate(List L,int i)
{
return L.data[i-];
} void PrintList(List L)
{
for(int i=;i<L.length;i++)
{
printf("%d ",L.data[i]);
}
printf("\n");
} int Empty(List L)
{
if(L.length==)
{
return TRUE;
}
else
{
return FALSE;
}
}

1.初始化顺序表

void InitList(List *p)
{
p->data=(ElemType*)malloc(sizeof(ElemType)*MaxSize);
p->length=;
}

2.插入操作 ,在第i个位置插入数据e

int ListInsert(List *p,int i,ElemType e)
{
if(i< || i>p->length+)
{
return FALSE;//插入位置不合法
}
if(p->length>=MaxSize)
{
return FALSE;//顺序表已满
}
for(int j=p->length;j>=i;j--)
{
p->data[j]=p->data[j-];
}
p->data[i-]=e;
p->length++;
return TRUE;
}

3.删除操作,删除第i个位置数据

int ListDelete(List *p,int i)
{
if(i< || i>p->length)
{
return FALSE;
}
for(int j=i;j<p->length;j++)
{
p->data[j-]=p->data[j];
}
p->length--;
return TRUE;
}

4.按值查找元素 ,返回元素在顺序表的位置

int ListFindValue(List L,ElemType e)
{
for(int i=;i<L.length;i++)
{
if(L.data[i]==e)
{
return i+;
}
}
return FALSE;
}

5.按位置查找元素

int ListFindLocate(List L,int i)
{
return L.data[i-];
}

6.判断顺序表是否为空,为空返回TRUE

int Empty(List L)
{
if(L.length==)
{
return TRUE;
}
else
{
return FALSE;
}
}

7.显示顺序表

void PrintList(List L)
{
for(int i=;i<L.length;i++)
{
printf("%d ",L.data[i]);
}
printf("\n");
}

二.线性表的链式存储

typedef int ElemType;
typedef struct Node{
ElemType data;
struct Node *next;
}Node;

0.完整代码

 #include <stdio.h>
#include <stdlib.h>
#define TRUE 1
#define FALSE 0
typedef int ElemType;
typedef struct Node{
ElemType data;
struct Node *next;
}Node; Node* InitNode();//初始化创建头结点
Node* Node_HeadInsert(Node *L);//头插法建立链表
Node* Node_TailInsert(Node *L);//尾插法建立链表
Node* NodeInsert(Node *L,int i);//在第i个位置插入结点
Node* NodeDelete(Node *L,int i);//删除第i个结点
Node* NodeSearchNum(Node *L,int i);//按序号查找
Node* NodeSearchValue(Node *L,ElemType x);//按值查找
void PrintNode(Node *L);//显示单链表
Node* NodeMerge(Node *p,Node *q);//合并两个递增链表 int main()
{
Node *L;
L=InitNode();
L=Node_TailInsert(L);
L=NodeInsert(L,);
PrintNode(L);
L=NodeDelete(L,);
PrintNode(L);
return ;
}
Node* InitNode()
{
Node *L;
L=(Node*)malloc(sizeof(Node));
L->next=NULL;
return L;
}
Node* Node_HeadInsert(Node *L)
{
Node *s;
ElemType x;
scanf("%d",&x);//插入结点的值
while(x!=)
{
s=(Node*)malloc(sizeof(Node));
s->data=x;
s->next=L->next;
L->next=s;
scanf("%d",&x);
}
return L;
} Node* Node_TailInsert(Node *L)
{
ElemType x;
Node *s,*r=L;
scanf("%d",&x);
while(x!=)
{
s=(Node*)malloc(sizeof(Node));
s->data=x;
r->next=s;
r=s;
scanf("%d",&x);
}
r->next=NULL;
return L;
} Node* NodeInsert(Node *L,int i)
{
ElemType x;
Node *s,*p=NodeSearchNum(L,i-);
printf("输入插入节点的值:") ;
scanf("%d",&x);
s=(Node*)malloc(sizeof(Node));
s->data=x;
s->next=p->next;
p->next=s;
printf("插入完成!\n");
return L;
} Node* NodeDelete(Node *L,int i)
{
Node *p,*q;
p=NodeSearchNum(L,i-);
q=p->next;
p->next=q->next;
free(q);
printf("删除完成!\n");
return L;
} Node *NodeSearchNum(Node *L,int i)
{
int count=;//计数
Node *p=L->next;
if(i==)
return L;
if(i<)
return NULL;
while(p&&count<i)
{
p=p->next;
count++;
}
return p;
} Node *NodeSearchValue(Node *L,ElemType x)
{
Node *p=L->next;
while(p&&p->data!=x)
{
p=p->next;
}
return p;
}
void PrintNode(Node *L)
{
Node *p=L->next;
printf("单链表:");
while(p)
{
printf("%d ",p->data);
p=p->next;
}
printf("\n"); } Node* NodeMerge(Node *p,Node *q)
{
Node *r,*t;
r=InitNode();
t=r;
while(p->next&&q->next)
{
if(p->next->data<q->next->data)
{
t->next=p->next;
p->next=p->next->next;
t=t->next;
}
else
{
t->next=q->next;
q->next=q->next->next;
t=t->next;
}
} while(p->next)
{
t->next=p->next;
p->next=p->next->next;
t=t->next;
} while(q->next)
{
t->next=q->next;
q->next=q->next->next;
t=t->next;
} free(p);
free(q); return r;
}

1.初始化创建头结点

Node* InitNode()
{
Node *L;
L=(Node*)malloc(sizeof(Node));
L->next=NULL;
return L;
}

2.头插法建立链表

Node* Node_HeadInsert(Node *L)
{
Node *s;
ElemType x;
scanf("%d",&x);//插入结点的值
while(x!=)
{
s=(Node*)malloc(sizeof(Node));
s->data=x;
s->next=L->next;
L->next=s;
scanf("%d",&x);
}
return L;
}

3.尾插法建立链表

 Node* Node_TailInsert(Node *L)
{
ElemType x;
Node *s,*r=L;
scanf("%d",&x);
while(x!=)
{
s=(Node*)malloc(sizeof(Node));
s->data=x;
r->next=s;
r=s;
scanf("%d",&x);
}
r->next=NULL;
return L;
}

4.在第i个位置插入结点

Node* NodeInsert(Node *L,int i)
{
ElemType x;
Node *s,*p=NodeSearchNum(L,i-);
printf("输入插入节点的值:") ;
scanf("%d",&x);
s=(Node*)malloc(sizeof(Node));
s->data=x;
s->next=p->next;
p->next=s;
printf("插入完成!\n");
return L;
}

5.删除第i个结点

Node* NodeDelete(Node *L,int i)
{
Node *p,*q;
p=NodeSearchNum(L,i-);
q=p->next;
p->next=q->next;
free(q);
printf("删除完成!\n");
return L;
}

6.按序号查找

 Node *NodeSearchNum(Node *L,int i)
{
int count=;//计数
Node *p=L->next;
if(i==)
return L;
if(i<)
return NULL;
while(p&&count<i)
{
p=p->next;
count++;
}
return p;
}

7.按值查找

 Node *NodeSearchValue(Node *L,ElemType x)
{
Node *p=L->next;
while(p&&p->data!=x)
{
p=p->next;
}
return p;
}

8.显示单链表

void PrintNode(Node *L)
{
Node *p=L->next;
printf("单链表:");
while(p)
{
printf("%d ",p->data);
p=p->next;
}
printf("\n"); }

9.合并两个递增链表

Node* NodeMerge(Node *p,Node *q)
{
Node *r,*t;
r=InitNode();
t=r;
while(p->next&&q->next)
{
if(p->next->data<q->next->data)
{
t->next=p->next;
p->next=p->next->next;
t=t->next;
}
else
{
t->next=q->next;
q->next=q->next->next;
t=t->next;
}
} while(p->next)
{
t->next=p->next;
p->next=p->next->next;
t=t->next;
} while(q->next)
{
t->next=q->next;
q->next=q->next->next;
t=t->next;
} free(p);
free(q); return r;
}

输出示例:

2020-06-27

线性表的顺序存储和链式存储c语言实现的更多相关文章

  1. 数据结构导论 四 线性表的顺序存储VS链式存储

    前几章已经介绍到了顺序存储.链式存储 顺序存储:初始化.插入.删除.定位 链式存储:初始化.插入.删除.定位 顺序存储:初始化 strudt student{ int ID://ID char nam ...

  2. 算法与数据结构(一) 线性表的顺序存储与链式存储(Swift版)

    温故而知新,在接下来的几篇博客中,将会系统的对数据结构的相关内容进行回顾并总结.数据结构乃编程的基础呢,还是要不时拿出来翻一翻回顾一下.当然数据结构相关博客中我们以Swift语言来实现.因为Swift ...

  3. 线性表的顺序存储和链式存储的实现(C)

    //线性表的顺序存储 #include <stdio.h>typedef int DataType;#define MaxSize 15//定义顺序表typedef struct { Da ...

  4. 线性表的Java实现--链式存储(单向链表)

    单向链表(单链表)是链表的一种,其特点是链表的链接方向是单向的,对链表的访问要通过顺序读取从头部开始. 链式存储结构的线性表将采用一组任意的存储单元存放线性表中的数据元素.由于不需要按顺序存储,链表在 ...

  5. c数据结构 -- 线性表之 复杂的链式存储结构

    复杂的链式存储结构 循环链表 定义:是一种头尾相接的链表(即表中最后一个结点的指针域指向头结点,整个链表形成一个环) 优点:从表中任一节点出发均可找到表中其他结点 注意:涉及遍历操作时,终止条件是判断 ...

  6. 队列的顺序存储与链式存储c语言实现

    一. 队列 1.队列定义:只允许在表的一端进行插入,表的另一端进行删除操作的线性表. 2.循环队列:把存储队列的顺序队列在逻辑上视为一个环. 循环队列状态: 初始时:Q.front=Q.rear=0 ...

  7. 栈的顺序存储和链式存储c语言实现

    一. 栈 栈的定义:栈是只允许在一端进行插入或删除操作的线性表. 1.栈的顺序存储 栈顶指针:S.top,初始设为-1 栈顶元素:S.data[S.top] 进栈操作:栈不满时,栈顶指针先加1,再到栈 ...

  8. 线性表的Java实现--链式存储(双向链表)

    有了单向链表的基础,双向链表的实现就容易多了. 双向链表的一般情况: 增加节点: 删除节点: 双向链表的Java实现: package com.liuhao.algorithm;      publi ...

  9. C 数据结构1——线性表分析(顺序存储、链式存储)

    之前是由于学校工作室招新,跟着大伙工作室招新训练营学习数据结构,那个时候,纯碎是小白(至少比现在白很多)那个时候,学习数据结构,真的是一脸茫然,虽然写出来了,但真的不知道在干嘛.调试过程中,各种bug ...

随机推荐

  1. Java实现 蓝桥杯 算法提高 套正方形(暴力)

    试题 算法提高 套正方形 问题描述 给定正方形边长width,如图按规律输出层层嵌套的正方形图形. 注意,为让选手方便观看,下图和样例输出均使用""代替空格,请选手输出的时候使用空 ...

  2. (Java实现) 最大团问题 部落卫队

    首先介绍下最大团问题: 问题描述:给一个无向图G=(V,E) ,V是顶点集合,E是边集合.然后在这顶点集合中选取几个顶点,这几 个顶点任意两个之间都有边在E中.求最多可以选取的顶点个数.这几个顶点就构 ...

  3. Java实现 LeetCode 111 二叉树的最小深度

    111. 二叉树的最小深度 给定一个二叉树,找出其最小深度. 最小深度是从根节点到最近叶子节点的最短路径上的节点数量. 说明: 叶子节点是指没有子节点的节点. 示例: 给定二叉树 [3,9,20,nu ...

  4. 大顶堆与小顶堆应用---寻找前k小数

    vector<int> getLeastNumber(vector<int>& arr,int k){ vector<int> vec(k,); if(== ...

  5. el-upload配合vue-cropper实现上传图片前裁剪

    需求背景 上传一个封面图,在上传之前需要对图片进行裁剪,上传裁剪之后的图片,类似微信的上传头像. 技术方案 上传肯定是用element的 el-upload 组件实现上传,非常方便,各种钩子函数. 裁 ...

  6. .NET Core SDKs installed: No SDKs were found.

    问题描述 今天vs2019创建了asp.net core项目,发现无法加载项目.尝试打开之前的.net core项目项目,同样无法加载项目. 打开cmd,输入 dotnet ,提示 .NET Core ...

  7. mysql基础-数据类型和sql模式-学习之(三)

    0x01 mysql的两种方向: 开发DBA:数据库设计(E-R关系图).sql开发.内置函数.存储历程(存储过程和存储函数).触发器.时间调度器(event scheduler) 运维----> ...

  8. Centos7.3 搭建KVM 命令安装VM虚拟机

      操作系统:centos7.3   一.安装KVM 1. 验证CPU是否支持KVM:如果结果中有vmx(Intel)或svm(AMD)字样,就说明CPU的支持的. egrep '(vmx|svm)' ...

  9. pytorch入门2.1构建回归模型初体验(模型构建)

    pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...

  10. 短短1天我学会了如何修改Butterfly的配置文件

    目录 一.修改默认语言 二.创建标签.分类.关于和留言版页面 三.添加搜索框 四.飘带背景 五.使用Valine添加评论功能并支持邮箱提醒 六.收录谷歌.百度 一.修改默认语言 说明:安装Butter ...