正如你目前所看到的,神经网络的性能非常依赖超参数。因此,了解这些参数如何影响网络变得至关重要。

常见的超参数是学习率、正则化器、正则化系数、隐藏层的维数、初始权重值,甚至选择什么样的优化器优化权重和偏置。

超参数调整过程

  1. 调整超参数的第一步是构建模型。与之前一样,在 TensorFlow 中构建模型。
  2. 添加一种方法将模型保存在 model_file 中。在 TensorFlow 中,可以使用 Saver 对象来完成。然后保存在会话中:

     
  3. 确定要调整的超参数,并为超参数选择可能的值。在这里,你可以做随机的选择、固定间隔值或手动选择。三者分别称为随机搜索、网格搜索和手动搜索。例如,下面是用来调节学习率的代码:

     
  4. 选择对损失函数给出最佳响应的参数。所以,可以在开始时将损失函数的最大值定义为 best_loss(如果是精度,可以选择将自己期望得到的准确率设为模型的最低精度):

     
  5. 把你的模型放在 for 循环中,然后保存任何能更好估计损失的模型:

除此之外,贝叶斯优化也可以用来调整超参数。其中,用高斯过程定义了一个采集函数。高斯过程使用一组先前评估的参数和得出的精度来假定未观察到的参数。采集函数使用这一信息来推测下一组参数。https://github.com/lucfra/RFHO上有一个包装器用于基于梯度的超参数优化。

TensorFlow从0到1之TensorFlow超参数及其调整(24)的更多相关文章

  1. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  2. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  3. TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)

    TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.它使用梯度自动更新用变量定义的张量.本节将使用 TensorFlow 优化器来训练网络. 前面章节中,我们定 ...

  4. TensorFlow从0到1之TensorFlow实现单层感知机(20)

    简单感知机是一个单层神经网络.它使用阈值激活函数,正如 Marvin Minsky 在论文中所证明的,它只能解决线性可分的问题.虽然这限制了单层感知机只能应用于线性可分问题,但它具有学习能力已经很好了 ...

  5. TensorFlow从0到1之TensorFlow优化器(13)

    高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...

  6. TensorFlow从0到1之TensorFlow Keras及其用法(25)

    Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...

  7. TensorFlow从0到1之TensorFlow常用激活函数(19)

    每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...

  8. TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)

    本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...

  9. TensorFlow从0到1之TensorFlow csv文件读取数据(14)

    大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...

随机推荐

  1. 【Redis】List常见应用场景

    常用数据结构 Stack(栈) = LPUSH + LPOP ->FILO Queue(队列) = LPUSH + RPOP Blocking MQ(阻塞队列) = LPUSH + BRPOP ...

  2. 【Redis】String应用场景

    单值缓存 SET key value GET key 对象缓存 SET user: value(json格式数据) MSET user::name value1 user::balance value ...

  3. java,netcore和nodejs api性能测试

    一. 前言 作为有点经验的码农,现在退休在家带孩子.闲来无事,想对使用过的框架(如果写语言容易引战,php是世界上最好的语言)做一个性能测试. 二. 背景 由于毕业后刚开始接触的编程语言是C#, 从a ...

  4. Robot Framework(1)- 入门介绍

    如果你还想从头学起Robot Framework,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1770899.html RF 的介绍 R ...

  5. 查看包名和Activity的小工具

    添加到右键菜单,很方便. 做个记录:请移步原文

  6. [工具-003]如何从ipa中提取info.plist并提取相应信息

    最近公司的产品要进行一次批量的升级,产品中的一些配置存放在info.plist,为了保证产品的信息无误,我们必须要对产品的发布信息进行验证.例如:广告ID,umeng,talkingdata等等.那么 ...

  7. 一个 json 转换工具

    在前后端的数据协议(主要指http和websocket)的问题上,如果前期沟通好了,那么数据协议上问题会很好解决,前后端商议一种都可以接受的格式即可.但是如果接入的是老系统.第三方系统,或者由于某些奇 ...

  8. lua string方法拓展

    --[[-- 用指定字符或字符串分割输入字符串,返回包含分割结果的数组 local input = "Hello,World" local res = string.split(i ...

  9. Chisel3 - Tutorial - ShiftRegister

    https://mp.weixin.qq.com/s/LKiXUgSnt3DzgFLa9zLCmQ   简单的寄存器在时钟的驱动下,逐个往下传值.   参考链接: https://github.com ...

  10. 【Springboot HBase】遇到的一些问题

    想要运行的代码需要在application中运行 使用@Component并实现CommandLineRunner接口.重写方法@Override run( ) @Component public c ...