[CF914D]Sum the Fibonacci
题目
点这里看题目。
分析
我们先放宽条件,重新定义五元组\((a,b,c,d,e)\)如下:
1.\(1\le a,b,c,d,e\le n\)。
2.\(s_a\&s_b=1\)。
并且设\(v(a,b,c,d,e)=(s_a|s_b)\&s_c\&(s_d\oplus s_e)\)。(这里的\(\oplus\)指代异或,下同)
于是乎答案可以变成:
&\sum_{p}\ \sum_{v(a,b,c,d,e)=2^p}\ f(s_a|s_b)\times f(s_c)\times f(s_d\oplus s_e)\\
=&\sum_{p}\ \sum_{i\& j\& k=2^p} f(i)\times \left(\sum_{a|b=i,a\& b=0}1\right)\times f(j)\times f(k)\times \left(\sum_{d\oplus e=k}1\right)
\end{aligned}
\]
中间一层求和实际上是与卷积,内部的第一个求和是一个子集卷积,内部第二个求和是一个异或卷积。与卷积可以 FWT (或者叫 FMT ), 子集卷积可以 FST ,异或卷积可以 FWT 。总的时间复杂度为\(O(n\log_2^2n)\)( FST 最花时间 )。
FST 实际上是 魔改 FWT 的思想,只不过为了避免分出来的子集还有交,就加了一位表示集合的大小(子集卷积满足\(A,B\subseteq S, A\cup B=S, A\cap B=\varnothing\),\(A\cap B=\varnothing\)的限制等价于\(|A|+|B|=|S|\))。
代码
#include <cstdio>
typedef long long LL;
const int mod = 1e9 + 7, inv2 = 5e8 + 4;
const int MAXN = 1e6 + 5, MAXL = ( 1 << 17 ) + 5, MAXLOG = 20;
template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
}
template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
}
template<typename _T>
_T MAX( const _T a, const _T b )
{
return a > b ? a : b;
}
int f[MAXLOG][MAXL], h[MAXL];
int A[MAXL], B[MAXL], C[MAXL], fibo[MAXL];
int cnt[MAXL];
int N, len, lg2;
int lowbit( const int x ) { return x & ( -x ); }
int fix( const int a ) { return ( a % mod + mod ) % mod; }
int count( int x ) { int ret = 0; while( x ) ret ++, x -= lowbit( x ); return ret; }
namespace OR
{
void FWT( int *F, const int mode )
{
for( int s = 2 ; s <= len ; s <<= 1 )
for( int i = 0, t = s >> 1 ; i < len ; i += s )
for( int j = i ; j < i + t ; j ++ )
F[j + t] = fix( F[j + t] + mode * F[j] );
}
}
namespace AND
{
void FWT( int *F, const int mode )
{
for( int s = 2 ; s <= len ; s <<= 1 )
for( int i = 0, t = s >> 1 ; i < len ; i += s )
for( int j = i ; j < i + t ; j ++ )
F[j] = fix( F[j] + mode * F[j + t] );
}
}
namespace XOR
{
void FWT( int *F, const int mode )
{
int t1, t2;
for( int s = 2 ; s <= len ; s <<= 1 )
for( int i = 0, t = s >> 1 ; i < len ; i += s )
for( int j = i ; j < i + t ; j ++ )
{
t1 = F[j], t2 = F[j + t];
if( mode > 0 ) F[j] = ( t1 + t2 ) % mod, F[j + t] = fix( t1 - t2 );
else F[j] = 1ll * ( t1 + t2 ) * inv2 % mod, F[j + t] = 1ll * fix( t1 - t2 ) * inv2 % mod;
}
}
}
void FST()
{
for( int i = 0 ; i <= lg2 ; i ++ ) OR :: FWT( f[i], 1 );
for( int i = 0 ; i <= lg2 ; i ++ )
{
for( int S = 0 ; S < len ; S ++ ) h[S] = 0;
for( int j = 0 ; j <= i ; j ++ )
for( int S = 0 ; S < len ; S ++ )
h[S] = ( h[S] + 1ll * f[j][S] * f[i - j][S] % mod ) % mod;
OR :: FWT( h, -1 );
for( int S = 0 ; S < len ; S ++ ) if( cnt[S] == i ) A[S] = ( A[S] + h[S] ) % mod;
}
}
void init()
{
fibo[0] = 0, fibo[1] = 1;
for( int i = 2 ; i < ( 1 << 17 ) ; i ++ ) fibo[i] = ( fibo[i - 1] + fibo[i - 2] ) % mod;
for( int i = 0 ; i < ( 1 << 17 ) ; i ++ ) cnt[i] = count( i );
}
signed main()
{
int mx = 0;
read( N );
init();
for( int i = 1, v ; i <= N ; i ++ )
{
read( v ), mx = MAX( v, mx );
f[cnt[v]][v] ++, C[v] ++, B[v] = ( B[v] + fibo[v] ) % mod;
}
for( lg2 = 0, len = 1 ; len <= mx ; len <<= 1, lg2 ++ );
FST();
XOR :: FWT( C, 1 );
for( int i = 0 ; i < len ; i ++ ) C[i] = 1ll * C[i] * C[i] % mod;
XOR :: FWT( C, -1 );
for( int i = 0 ; i < len ; i ++ ) A[i] = 1ll * A[i] * fibo[i] % mod, C[i] = 1ll * C[i] * fibo[i] % mod;
AND :: FWT( A, 1 ), AND :: FWT( B, 1 ), AND :: FWT( C, 1 );
for( int i = 0 ; i < len ; i ++ ) A[i] = 1ll * A[i] * B[i] % mod * C[i] % mod;
AND :: FWT( A, -1 );
int ans = 0;
for( int i = 1 ; i <= len ; i <<= 1 ) ( ans += A[i] ) %= mod;
write( ans ), putchar( '\n' );
return 0;
}
[CF914D]Sum the Fibonacci的更多相关文章
- 【CF914G】Sum the Fibonacci 快速??变换模板
[CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...
- CF914G Sum the Fibonacci(FWT,FST)
CF914G Sum the Fibonacci(FWT,FST) Luogu 题解时间 一堆FWT和FST缝合而来的丑陋产物. 对 $ cnt[s_{a}] $ 和 $ cnt[s_{b}] $ 求 ...
- Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined)G. Sum the Fibonacci
题意:给一个数组s,求\(f(s_a | s_b) * f(s_c) * f(s_d \oplus s_e)\),f是斐波那契数列,而且要满足\(s_a\&s_b==0\),\((s_a | ...
- 【codeforces914G】Sum the Fibonacci FWT+FST(快速子集变换)
题目描述 给出一个长度为 $n$ 的序列 $\{s\}$ ,对于所有满足以下条件的五元组 $(a,b,c,d,e)$ : $1\le a,b,c,d,e\le n$ : $(s_a|s_b)\& ...
- codeforces914G Sum the Fibonacci
题目大意:给定一个长为$n$($n\leq 10^6$)的序列S,定义一个合法的五元组$(a,b,c,d,e)$合法当且仅当 $$ ( S_a \mid S_b ) and S_c and ( S_d ...
- CF 914 G Sum the Fibonacci —— 子集卷积,FWT
题目:http://codeforces.com/contest/914/problem/G 其实就是把各种都用子集卷积和FWT卷起来算即可: 注意乘 Fibonacci 数组的位置: 子集卷积时不能 ...
- 题解 CF914G Sum the Fibonacci
题目传送门 题目大意 给出\(n,s_{1,2,...,n}\),定义一个五元组\((a,b,c,d,e)\)合法当且仅当: \[1\le a,b,c,d,e\le n \] \[(s_a\vee s ...
- CF914G Sum the Fibonacci FWT、子集卷积
传送门 一道良心的练习FWT和子集卷积的板子-- 具体来说就是先把所有满足\(s_a \& s_b = 0\)的\(s_a \mid s_b\)的值用子集卷积算出来,将所有\(s_a \opl ...
- CF914G Sum the Fibonacci
解:发现我们对a和b做一个集合卷积,对d和e做一个^FWT,然后把这三个全部对位乘上斐波那契数,然后做&FWT就行了. #include <bits/stdc++.h> , MO ...
随机推荐
- mysql小白系列_12 sysbench
压测 1.查看机器负载load top - load average 1m 5m 15m cat /proc/loadavg 与CPU个数有关,1个load表示1个CPUcat /proc/cpuin ...
- SSD1306(OLED驱动芯片)指令详解
基础命令: 1.页地址模式下设置列起始地址低位(Set Lower Column Start Address For Page Addressing Mode)(00h~0Fh) 此指令用于在页地址模 ...
- 201771010128王玉兰《面向对象程序设计(Java)》第十三周学习总结
第一部分:基础理论知识 1.事件处理基础 事件源(event source):能够产生事件的对象都可 以成为事件源,如文本框.按钮等.一个事件源是一个 能够注册监听器并向监听器发送事件对象的对象. 事 ...
- Spring Bean 后置处理器
Bean 后置处理器允许在调用初始化方法前后对 Bean 进行额外的处理. BeanPostProcessor 接口定义回调方法,你可以实现该方法来提供自己的实例化逻辑,依赖解析逻辑等. 你也可以在 ...
- 【Java_SSM】(三)maven中的配置文件setting的配置
这篇博文我们介绍两方面:如何修改setting.xml文件及相应配置(本文maven版本为3.5.0) (1)首先打开maven文件目录--conf,会看见如下目录 (2)复制setting.xml文 ...
- docker file的基本使用-案例创建centos
#基于镜像 FROM centos #作者 MAINTAINER xiaozhang #声明变量 ENV ROOT_PATH /usr/local/ #设置工作目录 用户进入容器之后终端默认路径 WO ...
- Collection接口和list,set子类
Collection接口常用的子接口有:List接口.Set接口List接口常用的子类有:ArrayList类.LinkedList类Set接口常用的子类有:HashSet类.LinkedHashSe ...
- Oracle 中序列使用
转 https://www.cnblogs.com/21-forever/p/11265924.html 序列: 1.Oracle是不支持自增长的: ①.序列是用于生成唯一.连续序号的对象: ②.序列 ...
- 机器人操作系统——ROS,Robot Operating System
Note:偶然看到的滴滴研究院的无人驾驶竞赛,了解一下. ROS:专为机器人软件开发所设计出来的一套电脑操作系统架构.是一个开源的元级操作系统(后操作系统),提供类似操作系统的服务,包括硬件抽象描述. ...
- 国家集训队 部落战争 网络流最小路径覆盖 洛谷P2172
洛谷AC传送门! step1: 题目大意 有一张M x N的网格图,有一些点为“ * ”可以走,有一些点为“ x ”不能走,每走一步你都可以移动R * C 个格子(参考象棋中马的走法),且不能回头,已 ...