第7章 PCA与梯度上升法
主成分分析法:主要作用是降维
疑似右侧比较好?
第三种降维方式:
问题:?????
方差:描述样本整体分布的疏密的指标,方差越大,样本之间越稀疏;越小,越密集
第一步:
总结:
问题:????怎样使其最大
变换后:
最后的问题:????
注意区别于线性回归
使用梯度上升法解决PCA问题:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets digits = datasets.load_digits() # 手写识别数据
X = digits.data
y = digits.target from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
# 使用K近邻
from sklearn.neighbors import KNeighborsClassifier
knn_clf=KNeighborsClassifier()
knn_clf.fit(X_train,y_train)
a1=knn_clf.score(X_test,y_test)
# print(a1)
# 使用PCA
from sklearn.decomposition import PCA
pca=PCA(n_components=2)
pca.fit(X_train)
X_train_reduction=pca.transform(X_train)
X_test_reduction=pca.transform(X_test)
knn_clf=KNeighborsClassifier()
knn_clf.fit(X_train_reduction,y_train)
a2=knn_clf.score(X_test_reduction,y_test)
# print(a2) # print(pca.explained_variance_ratio_)
pca=PCA(n_components=X_train.shape[1])
pca.fit(X_train)
# print(pca.explained_variance_ratio_) plt.plot([i for i in range(X_train.shape[1])],
[np.sum(pca.explained_variance_ratio_[:i+1]) for i in range(X_train.shape[1])])
# plt.show() pca1=PCA(0.95) # 能解释95%以上的方差
pca1.fit(X_train)
print(pca.n_components_) from sklearn.decomposition import PCA
pca=PCA(0.95)
pca.fit(X_train)
X_train_reduction=pca.transform(X_train)
X_test_reduction=pca.transform(X_test)
knn_clf=KNeighborsClassifier()
knn_clf.fit(X_train_reduction,y_train)
a3=knn_clf.score(X_test_reduction,y_test)
print(a3) pca=PCA(n_components=2)
pca.fit(X)
X_reduction=pca.transform(X)
for i in range(10):
plt.scatter(X_reduction[y==i,0],X_reduction[y==i,1],alpha=0.8)
plt.show()
scikit-learn中的PCA
第7章 PCA与梯度上升法的更多相关文章
- 机器学习(七) PCA与梯度上升法 (上)
一.什么是PCA 主成分分析 Principal Component Analysis 一个非监督学的学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化:去噪 第一 ...
- 机器学习(4)——PCA与梯度上升法
主成分分析(Principal Component Analysis) 一个非监督的机器学习算法 主要用于数据的降维 通过降维,可以发现更便于人类理解的特征 其他应用:可视化.去噪 通过映射,我们可以 ...
- 4.pca与梯度上升法
(一)什么是pca pca,也就是主成分分析法(principal component analysis),主要是用来对数据集进行降维处理.举个最简单的例子,我要根据姓名.年龄.头发的长度.身高.体重 ...
- 机器学习(七) PCA与梯度上升法 (下)
五.高维数据映射为低维数据 换一个坐标轴.在新的坐标轴里面表示原来高维的数据. 低维 反向 映射为高维数据 PCA.py import numpy as np class PCA: def __ini ...
- 机器学习:PCA(使用梯度上升法求解数据主成分 Ⅰ )
一.目标函数的梯度求解公式 PCA 降维的具体实现,转变为: 方案:梯度上升法优化效用函数,找到其最大值时对应的主成分 w : 效用函数中,向量 w 是变量: 在最终要求取降维后的数据集时,w 是参数 ...
- 《机器学习实战》学习笔记——第13章 PCA
1. 降维技术 1.1 降维的必要性 1. 多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯.2. 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负 ...
- 第四章 PCA降维
目录 1. PCA降维 PCA:主成分分析(Principe conponents Analysis) 2. 维度的概念 一般认为时间的一维,而空间的维度,众说纷纭.霍金认为空间是10维的. 3. 为 ...
- Python3入门机器学习经典算法与应用
<Python3入门机器学习经典算法与应用> 章节第1章 欢迎来到 Python3 玩转机器学习1-1 什么是机器学习1-2 课程涵盖的内容和理念1-3 课程所使用的主要技术栈第2章 机器 ...
- Python3入门机器学习经典算法与应用☝☝☝
Python3入门机器学习经典算法与应用 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 使用新版python3语言和流行的scikit-learn框架,算法与 ...
随机推荐
- JS点击按钮,提示确认后跳转网页,并可传递参数
综合参考: http://jingyan.baidu.com/article/47a29f242b180ac0142399f9.html http://blog.csdn.net/hshl1214/a ...
- ffmpeg+SDL2实现的音频播放器V2.0(无杂音)
1. 前言 目前为止,学习了并记录了ffmpeg+SDL2显示视频以及事件(event)的内容. 这篇中记录ffmpeg+SDL2播放音频,没加入事件处理. 接下来加入事件处理并继续学习音视频同步,再 ...
- Clickhouse 条形图📊函数展示
Clickhouse 条形图
- PHP版DES算法加密数据(3DES)另附openssl_encrypt版本
PHP版DES算法加密数据(3DES) 可与java的DES(DESede/CBC/PKCS5Padding)加密方式兼容 <?php /** * Created by PhpStorm. * ...
- Linked List-1
链表一直是面试的重点问题,恰好最近看到了Stanford的一篇材料,涵盖了链表的基础知识以及派生的各种问题. 第一篇主要是关于链表的基础知识. 一.基本结构 1.数组回顾 链表和数组都是用来存储一堆数 ...
- P4370 [Code+#4]组合数问题2
题目要求当\(0\leq a\leq b\leq n\)时,\(k\)个\(\tbinom{b}{a}\)的和的最大值 观察杨辉三角形,可以发现,最大的\(\tbinom{b}{a}\),为\(\tb ...
- 题目分享N
题意:有辆车,有r行,s*2列,在第s列和第s+1列之间有个过道,出口在第r+1行的过道处,现在给出每个人的位置(行号和列号),每人每次只能动一格,问最少耗费多长时间全员才能逃出去 分析:假如车上只有 ...
- DVWA-对Command Injection(命令注入)的简单演示与分析
前言 上一篇文章中,对命令注入进行了简单的分析,有兴趣的可以去看一看,文章地址 https://www.cnblogs.com/lxfweb/p/12828754.html,今天这篇文章以DVWA的C ...
- ModuleNotFoundError: No module named 'pip'的解决方案
python在通过cmd安装pandas时遇到ModuleNotFoundError: No module named 'pip'的报错. 网上查询后通过如下两行cmd命令解决了 python -m ...
- Jmeter系列(10)- 阶梯加压线程组Stepping Thread Group详解
如果你想从头学习Jmeter,可以看看这个系列的文章哦 https://www.cnblogs.com/poloyy/category/1746599.html 前言 Stepping Thread ...