class BPNet(nn.Module):
def __init__(self, in_dim, n_hidden_1, n_hidden_2,\
n_hidden_3, n_hidden_4, n_hidden_5, out_dim):
super(BPNet, self).__init__()
self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1))
self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2))
self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, n_hidden_3), nn.BatchNorm1d(n_hidden_3), nn.ReLU(True))
self.layer4 = nn.Sequential(nn.Linear(n_hidden_3, n_hidden_4), nn.BatchNorm1d(n_hidden_4), nn.ReLU(True), nn.Dropout(0.1))
self.layer5 = nn.Sequential(nn.Linear(n_hidden_4, n_hidden_5), nn.BatchNorm1d(n_hidden_5))
self.layer6 = nn.Sequential(nn.Linear(n_hidden_5, out_dim)) def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
return x
net = BPNet(in_dim=5, n_hidden_1=20, n_hidden_2=250, n_hidden_3=500, n_hidden_4=250, n_hidden_5=50, out_dim=2)  # 实例化网络

简洁写法
cfg = {
'': [20, 200, 500, 200, 50], } class BPNet(nn.Module):
def __init__(self, name):
super(BPNet, self).__init__()
self.features = self._make_layers(cfg[name])
self.classifier = nn.Sequential(
nn.Linear(cfg[name][-1], 2)
) def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out def _make_layers(self, cfg):
layers = []
in_dim = 5
for x in cfg:
layers += [nn.Linear(in_dim, x),
nn.BatchNorm1d(x),
nn.ReLU(inplace=True)]
in_dim = x
return nn.Sequential(*layers)
net = BPNet('1')

Pytorch自定义创建BP神经网络的更多相关文章

  1. BP神经网络分类应用

    DNA序列分类  作为研究DNA序列结构的尝试,提出以下对序列集合进行分类的问题:有20个已知类别的人工制造序列,其中序列标号1-10为A类,11-20为B类.请从中提取特征,构造分类方法,并用这些已 ...

  2. 使用HOG特征+BP神经网络进行车标识别

    先挖个坑,快期末考试了,有空填上w 好了,今晚刚好有点闲,就把坑填上吧. //-------------------------------开篇---------------------------- ...

  3. 机器学习(一):梯度下降、神经网络、BP神经网络

    这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知 ...

  4. bp神经网络及matlab实现

    本文主要内容包含: (1) 介绍神经网络基本原理,(2) AForge.NET实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法 . 第0节.引例  本文以Fisher的Iris数据集 ...

  5. 数模学习笔记(五)——BP神经网络

    1.BP神经网络是一种前馈型网络(各神经元接受前一层的输入,并输出给下一层,没有反馈),分为input层,hide层,output层 2.BP神经网络的步骤: 1)创建一个神经网络:newff a.训 ...

  6. BP神经网络(原理及MATLAB实现)

    人工神经网络概述: 人工神经元模型: 神经网络的分类: 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络: 按照学习方式,可以分为:有导师学习神经网络 vs. 无导师学习神经网络: ...

  7. Matlab的BP神经网络工具箱及其在函数逼近中的应用

    1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈 ...

  8. BP神经网络与Python实现

    人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善. 联想大家熟悉的回归问题, 神经网络模型实际上是根据训练样本创造出一个多维输入多维输出的函数, 并使用该函数进行预测, 网 ...

  9. BP神经网络学习

    人工神经元模型     S型函数(Sigmoid) 双极S型函数 神经网络可以分为哪些? 按照连接方式,可以分为:前向神经网络 vs. 反馈(递归)神经网络 按照学习方式,可以分为:有导师学习神经网络 ...

随机推荐

  1. Oracle job启动与关闭

    --查看job下次执行时间以及间隔时间 select * from dba_jobs where job = '774'; --启动job exec dbms_job.run(774); --停用jo ...

  2. hdu2492树状数组

    题目链接:http://icpc.njust.edu.cn/Problem/Hdu/2492/ 题目大意:给定一个序列,求长度为三的子序列(a,b,c)使得a<b<c或a>b> ...

  3. Nginx.pid打开失败以及失效的解决方案

    在启动nginx的时候报了如下的错误: 其意思是没有该文件或者是目录,通过查看之后发现确实没有该目录   cd /var/run/nginx 于是重新创建了这个文件,使用如下命令:   mkdir / ...

  4. CF1327A Sum of Odd Integers 题解

    原题链接 简要题意: 多组数据,问能否把 \(n\) 分为 \(k\) 个 不同的 正奇数之和. 盲猜数学结论题. 只要考虑两个问题: \(n\) 的大小是否足够. \(n\) 的奇偶性是否满足. 对 ...

  5. H3C路由器地址池租期时间H3CMSR830-6BHI-WiNet

    H3C路由器地址池租期时间H3CMSR830-6BHI-WiNet 设备H3CMSR830-6BHI-WiNet 先输入dis dhcp server tree pool 查看地址池名称,然后 < ...

  6. k8s可视化工具kubernetes-dashboard部署——小白教程

    参考资料: kubernetes官方文档 官方GitHub 创建访问用户 解决chrome无法访问dashboard 官方部署方法如下: kubectl apply -f https://raw.gi ...

  7. coding++:java-全局异常处理

    本次使用工具:SpringBoot   <version>1.5.19.RELEASE</version> Code: AbstractException: package m ...

  8. Make编译Ardupilot源码的两种方法

    编译环境准备 ​ Ardupilot源码下载和PX4 toolchain工具链下载 ​ (见https://www.cnblogs.com/BlogsOfLei/p/7707485.html) ​ 注 ...

  9. ubuntu查看并杀死自己之前运行的进程解决办法RuntimeError: CUDA error: out of memory

    问题描述:在跑深度学习算法的时候,发现服务器上只有自己在使用GPU,但使用GPU总是会报RuntimeError: CUDA error: out of memory,这是因为自己之前运行的进程还存在 ...

  10. Codeforces 1329C - Drazil Likes Heap(堆+贪心)

    题目链接 题意 给出一个高度为 h 的大根堆, 要求弹出其中若干个数后高度变为 g, 并且前后大根堆都是满二叉树. 问新的大根堆所有数之和的最小值, 并要给出一种弹出数的操作序列(节点序号). h, ...