http://acm.hdu.edu.cn/showproblem.php?pid=1828

Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description

A number of rectangular posters, photographs and other pictures of the same shape are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be partially or totally covered by the others. The length of the boundary of the union of all rectangles is called the perimeter.

Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.

The corresponding boundary is the whole set of line segments drawn in Figure 2.

The vertices of all rectangles have integer coordinates.

Input

Your program is to read from standard input. The first line contains the number of rectangles pasted on the wall. In each of the subsequent lines, one can find the integer coordinates of the lower left vertex and the upper right vertex of each rectangle. The values of those coordinates are given as ordered pairs consisting of an x-coordinate followed by a y-coordinate. 
0 <= number of rectangles < 5000 
All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.
Please process to the end of file.

Output

Your program is to write to standard output. The output must contain a single line with a non-negative integer which corresponds to the perimeter for the input rectangles.

Sample Input

-
-
-
-

Sample Output


题意:

有多个矩形,矩形的两边平行于坐标轴,这些矩形之间可能存在相互覆盖,求周长。

思路:
记录每个矩形的两条竖边(x1,y1,y2)和(x2,y1,y2),将所有的竖边按照x从小到大排序,然后一条一条竖边开始计算周长,那么以竖边所在的垂直于x轴的直线即是扫描线。
每次移动到一条新的竖边的时候,我们需要计算所在竖边扫描线上有用边长(即当前竖边的有用部分,可能当前的竖边被覆盖部分),以及加上当前扫描线与上一条扫描线之前的横边长 * 横边条数,
一直计算到最后一条竖边,即是完整周长了。
 

用一次扫描线,离散y坐标,按x从左到右扫描,统计每次总和的更改值,这样可以得到所有纵向边的和,对于横向边,可以用(Line[i].x - Line[i-1].x)*SegTree[1].num*2.前面的(Line[i].x - Line[i-1].x)相邻的两条线

段的x坐标的差,SegTree[1].num代表此时在线段树中一共有几条线段,每一条线段,就会增加这条线段的两个端点带来的横边。所以只要统计到当时有多少段覆盖的边,就可以得到那一段的横向的增加值

统计某一时刻有多少线段覆盖,可以用lf , rf记录这一个节点的两个端点是不是已经覆盖,如果覆盖值为1,那么这一段的num就是1,合并两个节点的时候,父节点的num等于左右子节点的num和,如果左节点

的rf与右节点的lf都是1,那么父节点的num值减去1。最后得到统计整个线段是由几个线段组成。

代码如下:

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <math.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <map>
#include <math.h>
const int INF=0x3f3f3f3f;
typedef long long LL;
const int mod=1e9+;
const int maxn=1e5+;
using namespace std; const int N=;
struct Line_node
{
int x;//横坐标
int y1,y2;//矩形纵向线段的左右端点
int flag;//标记是入边还是出边
bool operator < (const Line_node &s)
{
if(x==s.x)
return flag>s.flag;
else
return x<s.x;
}
}Line[N*]; struct SegTree_node
{
int l;
int r;
bool lf,rf;//左右边界点是否被覆盖;
int cover_len;
int cover_num;
int num;//矩形数目
}SegTree[maxn<<]; vector<int> vt; void Build(int l,int r,int rt)
{
SegTree[rt].l=l;
SegTree[rt].r=r;
SegTree[rt].cover_len=;
SegTree[rt].cover_num=;
SegTree[rt].num=;
SegTree[rt].lf=SegTree[rt].rf=false;
if(l+==r)
return ;
int mid=(l+r)>>;
Build(l,mid,rt<<);
Build(mid,r,rt<<|);
} void PushUp(int rt)
{
int l=SegTree[rt].l;
int r=SegTree[rt].r;
if(SegTree[rt].cover_num>)
{
SegTree[rt].cover_len=vt[r]-vt[l];
SegTree[rt].lf=SegTree[rt].rf=true;
SegTree[rt].num=;
return ;
}
// if(l+1==r)
// {
// SegTree[rt].cover_len=0;
// SegTree[rt].lf=SegTree[rt].rf=false;
// SegTree[rt].num=0;
// return ;
// }
SegTree[rt].cover_len=SegTree[rt<<].cover_len+SegTree[rt<<|].cover_len;
SegTree[rt].num=SegTree[rt<<].num+SegTree[rt<<|].num-(SegTree[rt<<].rf & SegTree[rt<<|].lf);//&按位与
SegTree[rt].lf=SegTree[rt<<].lf;
SegTree[rt].rf=SegTree[rt<<|].rf;
} void Update(Line_node t,int rt)
{
int l=SegTree[rt].l;
int r=SegTree[rt].r;
if(t.y1<=vt[l]&&t.y2>=vt[r])
{
SegTree[rt].cover_num+=t.flag;
PushUp(rt);
return ;
}
int mid=(l+r)>>;
if(t.y1<vt[mid])
Update(t,rt<<);
if(t.y2>vt[mid])
Update(t,rt<<|);
PushUp(rt);
} int main()
{
int n;
while (~scanf("%d",&n))
{
vt.clear();
for(int i=;i<n;i++)
{
int x1,x2,y1,y2;
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
Line[i*].x=x1;
Line[i*].y1=y1;
Line[i*].y2=y2;
Line[i*].flag=; Line[i*+].x=x2;
Line[i*+].y1=y1;
Line[i*+].y2=y2;
Line[i*+].flag=-;
vt.push_back(y1);
vt.push_back(y2);
}
sort(Line,Line+*n);
//y坐标离散化
sort(vt.begin(),vt.end());
int num=unique(vt.begin(),vt.end())-vt.begin();//去重并求出离散完的个数
Build(,num-,);
int ans=;//存累计面积
int prelen=;//前一个L值,刚开始是0
for(int i=;i<n*;i++)
{
if(i>)
{//SegTree[1].num代表目前线分成了几段,每段两个点,每个点一条横变
ans+=SegTree[].num**(Line[i].x-Line[i-].x);//先加横边
}
Update(Line[i],);//更新线段树中维护的线
ans+=abs(SegTree[].cover_len-prelen);//再加维护的线长度的变化值
prelen=SegTree[].cover_len;
}
printf("%d\n",ans);
}
return ;
}

HDU-1828 Picture(扫描线 求矩形并的周长)的更多相关文章

  1. 51nod 1206 && hdu 1828 Picture (扫描线+离散化+线段树 矩阵周长并)

    1206 Picture  题目来源: IOI 1998 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 给出平面上的N个矩形(矩形的边平行于X轴 ...

  2. poj 1177 --- Picture(线段树+扫描线 求矩形并的周长)

    题目链接 Description A number of rectangular posters, photographs and other pictures of the same shape a ...

  3. hdu 1828 Picture 切割线求周长

    Picture Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  4. hdu1828 线段树扫描线求矩形面积的周长

    题意:       给你n个矩形,问你这n个矩形所围成的图形的周长是多少. 思路:       线段树的扫描线简单应用,这个题目我用的方法比较笨,就是扫描两次,上下扫描,求出多边形的上下边长和,然后同 ...

  5. HDU 1828“Picture”(线段树+扫描线求矩形周长并)

    传送门 •参考资料 [1]:算法总结:[线段树+扫描线]&矩形覆盖求面积/周长问题(HDU 1542/HDU 1828) •题意 给你 n 个矩形,求矩形并的周长: •题解1(两次扫描线) 周 ...

  6. (中等) HDU 1828 Picture,扫描线。

    Problem Description A number of rectangular posters, photographs and other pictures of the same shap ...

  7. HDU 1828 Picture(长方形的周长和)

    HDU 1828 Picture 题目链接 题意:给定n个矩形,输出矩形周长并 思路:利用线段树去维护,分别从4个方向扫一次,每次多一段的时候,就查询该段未被覆盖的区间长度,然后周长就加上这个长度,4 ...

  8. HDU 1828 Picture(线段树扫描线求周长)

    Picture Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  9. hdu 1542 扫描线求矩形面积的并

    很久没做线段树了 求矩形面积的并分析:1.矩形比较多,坐标也很大,所以横坐标需要离散化(纵坐标不需要),熟悉离散化后这个步骤不难,所以这里不详细讲解了,不明白的还请百度2.重点:扫描线法:假想有一条扫 ...

随机推荐

  1. JavaScript—纯函数

    定义 一个函数的返回结果只依赖它的参数,而且在计算过程中不会产生其他副作用,也就是不会对外部的数据造成影响或改变. 理解:函数的返回结果只依赖它的参数 const a= 1; const b= (c) ...

  2. POJ 1017:Packets

    Packets Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 47513   Accepted: 16099 Descrip ...

  3. XML--XSL

    参考 http://blog.51cto.com/cnn237111/1345998 https://www.w3.org/TR/2017/REC-xslt-30-20170608/ 声明 把文档声明 ...

  4. 19 01 08 javascript 初学

    变量 JavaScript 是一种弱类型语言,javascript的变量类型由它的值来决定. 定义变量需要用关键字 'var' 变量类型 5种基本数据类型:1.number 数字类型2.string ...

  5. eclipse中tomcat添加或移除web项目出错,显示无资源能被添加或移除

    错误截图 之前一直都能正常使用,今天莫名其妙出现这个错误 解决办法 https://blog.csdn.net/u012956987/article/details/79134474 右击项目,在属性 ...

  6. share团队冲刺10

    团队冲刺第十天 昨天:完善代码,美化界面 今天:整合全部代码,基本完成作品 问题:无

  7. PHP的一个小tips (关于=和==或者===的使用)

    由于我在项目中,很多场景判断等式成立的时候 都习惯把值放在==前面(例如 1 == $nStatus), 今天有个同事揪着我问为啥总这样写,回答之后今天也稍作记录下吧. 如果正常些 $nStatus ...

  8. svnkit-常用api

    0.功能列表 svnkit功能列表 1.递归获取指定目录下目录和文件,以树形展示[svn Update] 2.获取指定文件和属性(版本号.作者.日期.文件类型) 3.获取指定文件或目录的历史记录(版本 ...

  9. 数字证书原理(ssl,https)

    https://blog.csdn.net/qq_34115899/article/details/81298284 关于私钥公钥数字签名数字证书.https.RSA的一些讲解 http://www. ...

  10. 第二季第六天 part2 css动画

    transition:background 2s,width 3s(第二个参数为变化时间) 1s(第三个参数为延迟时间): class:hover {}  伪类,鼠标移上去一个变化 <img  ...