2020-03-24 17:49:58

198. 打家劫舍

问题描述:

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
  偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
  偷窃到的最高金额 = 2 + 9 + 1 = 12 。

问题求解:

每个屋子有两个状态,一个被偷了一个是没被偷,我们可以创建一个二维的memo来存储状态。

dp[i][0]:到第i个位置,第i个位置没有被偷的最大金额

dp[i][1]:到第i个位置,第i个位置被偷的最大金额

初始化:dp[0][0] = 0,dp[0][1] = nums[0]

转移方程:dp[i][0] = Math.max(dp[i -1][1], dp[i - 1][0])

dp[i][1] = dp[i - 1][0] + nums[i]

时间复杂度:O(n)

    public int rob(int[] nums) {
if (nums.length == 0) return 0;
int n = nums.length;
int[][] dp = new int[n][2];
dp[0][1] = nums[0];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1]);
dp[i][1] = dp[i - 1][0] + nums[i];
}
return Math.max(dp[n - 1][0], dp[n - 1][1]);
}

  

213. 打家劫舍 II

问题描述:

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
  偷窃到的最高金额 = 1 + 3 = 4 。

问题求解:

上面一题的升级版本,将问题划分成两种状态去依次求解即可。

时间复杂度:O(n)

    public int rob(int[] nums) {
int n = nums.length;
if (n == 0) return 0;
if (n == 1) return nums[0];
return Math.max(helper(Arrays.copyOfRange(nums, 0, n - 1)), helper(Arrays.copyOfRange(nums, 1, n)));
} private int helper(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][2];
dp[0][1] = nums[0];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1]);
dp[i][1] = dp[i - 1][0] + nums[i];
}
return Math.max(dp[n - 1][0], dp[n - 1][1]);
}

  

337. 打家劫舍 III

问题描述:

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

示例 1:

输入: [3,2,3,null,3,null,1]

3
/ \
2 3
\ \ 
3 1

输出: 7 
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.

示例 2:

输入: [3,4,5,1,3,null,1]

3
/ \
4 5
/ \ \ 
1 3 1

输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.

问题求解:

树上动归,逻辑和前面保持一致。

时间复杂度:O(n)

    int res = 0;
public int rob(TreeNode root) {
helper(root);
return res;
} private int[] helper(TreeNode root) {
if (root == null) return new int[]{0, Integer.MIN_VALUE};
int[] l = helper(root.left);
int[] r = helper(root.right);
int[] curr = new int[2];
curr[0] = Math.max(l[0], l[1]) + Math.max(r[0], r[1]);
curr[1] = root.val + l[0] + r[0];
res = Math.max(res, Math.max(curr[0], curr[1]));
return curr;
}

  

1388. 3n 块披萨

问题描述:

给你一个披萨,它由 3n 块不同大小的部分组成,现在你和你的朋友们需要按照如下规则来分披萨:

你挑选 任意 一块披萨。
Alice 将会挑选你所选择的披萨逆时针方向的下一块披萨。
Bob 将会挑选你所选择的披萨顺时针方向的下一块披萨。
重复上述过程直到没有披萨剩下。
每一块披萨的大小按顺时针方向由循环数组 slices 表示。

请你返回你可以获得的披萨大小总和的最大值。

示例 1:

输入:slices = [1,2,3,4,5,6]
输出:10
解释:选择大小为 4 的披萨,Alice 和 Bob 分别挑选大小为 3 和 5 的披萨。然后你选择大小为 6 的披萨,Alice 和 Bob 分别挑选大小为 2 和 1 的披萨。你获得的披萨总大小为 4 + 6 = 10 。

示例 2:

输入:slices = [8,9,8,6,1,1]
输出:16
解释:两轮都选大小为 8 的披萨。如果你选择大小为 9 的披萨,你的朋友们就会选择大小为 8 的披萨,这种情况下你的总和不是最大的。

示例 3:

输入:slices = [4,1,2,5,8,3,1,9,7]
输出:21

示例 4:

输入:slices = [3,1,2]
输出:3

提示:

1 <= slices.length <= 500
slices.length % 3 == 0
1 <= slices[i] <= 1000

问题求解:

该问题可以转化为求不连续n / 3长度子序列的最大和问题。状态转移方程和上面的基本一致,只是多了一个取得个数的维度。

时间复杂度:O(n ^ 2)

    public int maxSizeSlices(int[] slices) {
int n = slices.length;
return Math.max(helper(Arrays.copyOfRange(slices, 0, n - 1)), helper(Arrays.copyOfRange(slices, 1, n)));
} private int helper(int[] nums) {
int n = nums.length;
int k = (n + 1) / 3;
int[][][] dp = new int[n][k + 1][2];
dp[0][1][0] = nums[0];
for (int i = 1; i < n; i++) {
for (int j = 1; j <= Math.min(k, (i + 2) / 2); j++) {
dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1]);
dp[i][j][1] = dp[i - 1][j - 1][0] + nums[i];
}
}
return Math.max(dp[n - 1][k][0], dp[n - 1][k][1]);
}

  

动态规划-不连续最大子序列和-打家劫舍系列-1388. 3n 块披萨的更多相关文章

  1. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  2. 【LeetCode】打家劫舍系列(I、II、III)

      打家劫舍(House Robber)是LeetCode上比较典型的一个题目,涉及三道题,主要解题思想是动态规划,将三道题依次记录如下: (一)打家劫舍 题目等级:198.House Robber( ...

  3. HDU1003MAX SUM (动态规划求最大子序列的和)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  4. HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  5. CSS2系列:BFC(块级格式化上下文)IFC(行级格式化上下文)

    BFC 块级格式化上下文,不好理解,我们暂且把她理解成"具有特殊的一类元素" 哪些元素会生成BFC? 根元素 float属性不为none position为absolute或fix ...

  6. Linux内核系列之Block块层(一)

    .Block块层入口函数为 genhd_device_init(),先对该函数开始分析: 函数实现源码: static int __init genhd_device_init(void) {     ...

  7. TCP连接建立系列 — 连接请求块

    连接请求块(request_sock)之于TCP三次握手,就如同网络数据包(sk_buff)之于网络协议栈,都是核心的数据结构. 内核版本:3.6 Author:zhangskd @ csdn blo ...

  8. (转载)一张表搞清楚西门子S7系列标准DB块与优化DB块

    在TIA Portal中为S7-1200/S7-1500 CPU 添加一个 DB 块时,其缺省属性为优化的 DB ,优化的 DB 块与标准的 DB 块整体对比如下表所示: 项 标准 DB 优化 DB ...

  9. nodejs系列笔记02---模块路径解析

    模块路径解析规则 参考这篇博客 我们已经知道,require函数支持斜杠(/)或盘符(C:)开头的绝对路径,也支持./开头的相对路径.但这两种路径在模块之间建立了强耦合关系,一旦某个模块文件的存放位置 ...

随机推荐

  1. WTF is The BlockChain?

    最近区块链大热,走到哪儿都有人在讨论区块链和比特币,甚至于一些对密码学完全没有概念的人都开始大肆吹捧,不免让人嗤之以鼻.相信很多技术和非技术的朋友都希望能够更深层次地去了解它是如何工作的.本文将用不到 ...

  2. IO和流

    I/O和流 I/O是Input和Output的缩写 从读写设备,包括硬盘文件,内存,键盘输入,屏幕输出,网路 输入输出"内容"(字节或文本) 流是对输入输出设备的一种抽象 从流中读 ...

  3. 痞子衡嵌入式:恩智浦i.MX RT1xxx系列MCU启动那些事(11.2)- FlexSPI NOR连接方式大全(RT1060/1064(SIP))

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MX RT1060/1064(SIP)两款MCU的FlexSPI NOR启动的连接方式. 上一篇文章<FlexSPI N ...

  4. sklearn简单实现机器学习算法记录

    sklearn简单实现机器学习算法记录 需要引入最重要的库:Scikit-learn 一.KNN算法 from sklearn import datasets from sklearn.model_s ...

  5. SpringBoot&Shiro实现权限管理

    SpringBoot&Shiro实现权限管理 引言 相信大家前来看这篇文章的时候,是有SpringBoot和Shiro基础的,所以本文只介绍整合的步骤,如果哪里写的不好,恳请大家能指出错误,谢 ...

  6. nginx能访问html静态文件但无法访问php文件

    nginx.conf中红框部分修改成你的实际网站根目录

  7. MVC01

    1.Controller 1) 添加: 在Controller目录右键进行添加,出现很多模式供选择,选择空的Controller,命名后新建.新建后Views 目录将同步生成相应名称的视图文件目录 均 ...

  8. [红日安全]Web安全Day9 - 文件下载漏洞实战攻防

    本文由红日安全成员: Once 编写,如有不当,还望斧正. 大家好,我们是红日安全-Web安全攻防小组.此项目是关于Web安全的系列文章分享,还包含一个HTB靶场供大家练习,我们给这个项目起了一个名字 ...

  9. Hibernage错误:Could not open Hibernate Session for transaction

    今天客户发来的错误,是SSH框架做的项目,是用户在登陆时候出现的错误,但刷新之后就没问题. 提示错误:Could not open Hibernate Session for transaction. ...

  10. sf-git机制

    为什么要专门写一篇关于sf科技公司的GIT管理机制呢?因为本周经历了两天的学习和考试,刚开始没在意,因为之前公司也用的GIT,所以没怎么看视频,就看了文档,练习考试时候才发现并非以前的那种git流程, ...