题目大意

二维平面上有 n 个爆炸桶,i−thi-thi−th爆炸桶位置为 (xi,yi)(x_i, y_i)(xi​,yi​) 爆炸范围为 rir_iri​ ,且需要 cic_ici​ 的价格引爆,求把所有桶引爆所需的钱。

分析

通过求有向图的强连通分量,求出所有爆炸块(满足引爆一个块内的任意一个爆炸桶就可以摧毁这个块内的爆炸桶),然后把所有爆炸块视为一个爆炸桶,价值为爆炸块内的价值最小值,然后重建有向图,将新建的有向图所有入度为 0 的点的价值相加,就是答案。

AC-Code

#include <bits/stdc++.h>

using namespace std;

const int MAXN = 1100;  // 点数
const int MAXM = 1000100; // 边数
struct Edge {
int to, next;
} edge[MAXM]; // 只有这里写的是 MAXM int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN]; //Belong 数组的值是 1 ~ scc
int Index, top;
int scc; // 强连通分量的个数
bool Instack[MAXN];
int num[MAXN]; // 各个强连通分量包含点的个数,数组编号 1 ~ scc
// num 数组不一定需要,结合实际情况 void addedge(int u, int v) {
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void Tarjan(int u) {
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for (int i = head[u]; i != -1; i = edge[i].next) {
v = edge[i].to;
if (!DFN[v]) {
Tarjan(v);
if (Low[u] > Low[v])
Low[u] = Low[v];
} else if (Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if (Low[u] == DFN[u]) {
scc++;
do {
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
} while (v != u);
}
} void solve(int N) {
memset(DFN, 0, sizeof(DFN));
memset(Instack, false, sizeof(Instack));
memset(num, 0, sizeof(num));
Index = scc = top = 0;
for (int i = 1; i <= N; i++)
if (!DFN[i])
Tarjan(i);
} void init() {
tot = 0;
memset(head, -1, sizeof(head));
} struct node {
int x, y, r, c; bool in_boom(const node &other) const {
return hypot(abs(x - other.x), abs(y - other.y)) <= r;
}
}; node nodeList[1100];
int n; void init_graph1() {
init();
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
if (i == j) continue;
if (nodeList[i].in_boom(nodeList[j]))
addedge(i, j);
}
}
} struct Graph {
struct Node {
int deg;
int value;
};
Node node[MAXN]; void init() {
for (int i = 0; i < n + 5; ++i) {
node[i].deg = 0;
node[i].value = INT_MAX;
}
} void add_edge(int from, int to) {
if (from != to)
node[to].deg++;
}
}; Graph graph;
int ans; void tp_init() {
graph.init();
for (int i = 1; i <= n; ++i) {
graph.node[Belong[i]].value = min(graph.node[Belong[i]].value, nodeList[i].c);
for (int j = 1; j <= n; ++j) {
if (i == j) continue;
if (nodeList[i].in_boom(nodeList[j]))
graph.add_edge(Belong[i], Belong[j]);
}
}
} void tp() {
ans = 0;
tp_init(); for (int i = 1; i <= scc; ++i) {
if (graph.node[i].deg == 0) {
ans += graph.node[i].value;
}
}
} void solve() {
int t;
cin >> t;
for (int ts = 0; ts < t; ++ts) {
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> nodeList[i].x >> nodeList[i].y >> nodeList[i].r >> nodeList[i].c;
}
init_graph1();
solve(n);
tp();
cout << "Case #" << ts + 1 << ": " << ans << endl;
}
} int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
#ifdef ACM_LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
long long test_index_for_debug = 1;
char acm_local_for_debug;
while (cin >> acm_local_for_debug) {
cin.putback(acm_local_for_debug);
if (test_index_for_debug > 20) {
throw runtime_error("Check the stdin!!!");
}
auto start_clock_for_debug = clock();
solve();
auto end_clock_for_debug = clock();
cout << "Test " << test_index_for_debug << " successful" << endl;
cerr << "Test " << test_index_for_debug++ << " Run Time: "
<< double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
cout << "--------------------------------------------------" << endl;
}
#else
solve();
#endif
return 0;
}

【HDU5934】Bomb——有向图强连通分量+重建图的更多相关文章

  1. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  2. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  3. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  4. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  5. 有向图强连通分量的Tarjan算法和Kosaraju算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  6. 算法笔记_144:有向图强连通分量的Tarjan算法(Java)

    目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...

  7. 有向图强连通分量的Tarjan算法及模板

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向 ...

  8. 【转载】有向图强连通分量的Tarjan算法

    转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...

  9. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

随机推荐

  1. CSS——NO.1(初识CSS)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  2. 冒泡排序算法(C#、Java、Python、JavaScript、C、C++实现)

    一.介绍 它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小.首字母从Z到A)错误就把他们交换过来. 走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素列已经排 ...

  3. iOS 开发富文本之TTTAttributedLabel 在某个特定位置的文字添加跳转,下划线,修改字体大小,颜色

    @property(nonatomic , strong) TTTAttributedLabel * ttLabel; @property(nonatomic , strong) NSRange li ...

  4. Web图片资源的加载与渲染时机

    此文研究页面中的图片资源的加载和渲染时机,使得我们能更好的管理图片资源,避免不必要的流量和提高用户体验. 浏览器的工作流程 要研究图片资源的加载和渲染,我们先要了解浏览器的工作原理.以Webkit引擎 ...

  5. CSS中"position:relative"属性与文档流的关系

    前言 近期遇到一个问题--"position:relative"到底会不会导致元素脱离文档流?主流观点是不会,但都给不出一个有说服力的论据.最后我自己佐证了一番,总算有了个结果:& ...

  6. Javascript元编程之Annotation

    语言的自由度 自由度这个概念在不同领域有不同的定义,我们借鉴数学中构成一个空间的维数来表达其自由度的做法,在此指的是:解决同一个问题彼此不相关的设计方法学数量. 例如,解决一个比如商品打折的问题,如何 ...

  7. Vue项目二、vue-cli2.x脚手架搭建build文件夹及config文件夹详解

    build文件夹下 build.js 'use strict' // js的严格模式 require('./check-versions')() // node和npm的版本检查 process.en ...

  8. JavaScript对象(二)

    Part One:对象的三个特性 原型(prototype)  类(class) 可扩展性(extensible attribute) 1,b.isPrototypeOf(o)  //判断b是不是o的 ...

  9. Vue在点击内部元素时(获得焦点),怎样让外部div元素样式变化?

    问题: div内部有很多元素,div. p. span .input等,各元素有嵌套,现在点击某元素时需要最外面这个div边框高亮,例如,点击了input开始输入 假设html 结构如下  <d ...

  10. Pyppeteer入门(转载)

    一.简介 Puppeteer 是 Google 基于 Node.js 开发的一个工具,有了它我们可以通过 JavaScript 来控制 Chrome 浏览器的一些操作,当然也可以用作网络爬虫上,其 A ...