AT1983 BBQ Hard 解题报告
题意
求\(\sum_{i=1}^{n} \sum_{j=i+1}^{n} \dbinom{a_i+a_j}{a_i+b_i+a_j+b_j}\)
解法
考虑\(\dbinom{a_i+a_j}{a_i+b_i+a_j+b_j}\)的几何意义,由\(\dbinom{x}{x+y}\)的意义可知这等价于从\((0, \; 0)\)走到\((a_i+a_j,\; b_i+b_j)\)的路径条数,即从\((-a_i, \; -b_i)\)走到\((a_j, \; b_j)\)的路径条数
对于路径条数,我们有dp: \(dp(i,\; j)=dp(i-1, \; j)+dp(i,\; j-1)\),在本题中由于值域较小可以使用,只需在起始时给每个\((-a_i, \; -b_i)\)都加上1(作为起点)即可
正确性显然
代码
#include<iostream>
using namespace std;
#define int long long
const int Mod = 1e9+7 ;
const int mxn = 2e6 ;
const int N=200005, M=8000;
int frac[mxn+5], inv[mxn+5];
int dp[M/2+5][M/2+5], base=M/4+2;
int n, a[N], b[N];
int power(int a, int b){
int res=1, car=a;
while(b){
if(b&1) (res*=car)%=Mod;
(car*=car)%=Mod;
b>>=1;
}
return res;
}
void init(){
frac[0]=1 ;
for(int i=1;i<mxn;++i) (frac[i]=frac[i-1]*i)%=Mod ;
inv[mxn-1] = power(frac[mxn-1], Mod-2);
for(int i=mxn-2;i>0;--i) inv[i]=(inv[i+1]*(i+1))%Mod ;
inv[0] = 1 ;
}
int C(int n, int k){
return ((frac[n]*inv[k]%Mod)*inv[n-k])%Mod ;
}
long long ans = Mod ;
signed main(){
init() ; cin>>n;
for(int i=1;i<=n;++i) cin>>a[i]>>b[i], ++dp[base-a[i]][base-b[i]];
for(int i=1;i<=M/2+2;++i) for(int j=1;j<=M/2+2;++j) (dp[i][j]+=(dp[i-1][j]+dp[i][j-1]))%=Mod;
for(int i=1;i<=n;++i) (ans+=dp[a[i]+base][b[i]+base]), (ans-=C(2*a[i]+2*b[i], 2*a[i]))%=Mod ; (ans+=Mod)%=Mod ;
cout<<(ans*power(2, Mod-2))%Mod<<endl ;
}
AT1983 BBQ Hard 解题报告的更多相关文章
- CH Round #56 - 国庆节欢乐赛解题报告
最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...
- 二模13day1解题报告
二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...
- BZOJ 1051 最受欢迎的牛 解题报告
题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4438 Solved: 2353[S ...
- 习题:codevs 2822 爱在心中 解题报告
这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...
- 习题:codevs 1035 火车停留解题报告
本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...
- 习题: codevs 2492 上帝造题的七分钟2 解题报告
这道题是受到大犇MagHSK的启发我才得以想出来的,蒟蒻觉得自己的代码跟MagHSK大犇的代码完全比不上,所以这里蒟蒻就套用了MagHSK大犇的代码(大家可以关注下我的博客,友情链接就是大犇MagHS ...
- 习题:codevs 1519 过路费 解题报告
今天拿了这道题目练练手,感觉自己代码能力又增强了不少: 我的思路跟别人可能不一样. 首先我们很容易就能看出,我们需要的边就是最小生成树算法kruskal算法求出来的边,其余的边都可以删掉,于是就有了这 ...
- NOIP2016提高组解题报告
NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合
- LeetCode 解题报告索引
最近在准备找工作的算法题,刷刷LeetCode,以下是我的解题报告索引,每一题几乎都有详细的说明,供各位码农参考.根据我自己做的进度持续更新中...... ...
随机推荐
- An attempt was made to call the method com.google.gson.GsonBuilder.setLenient()Lcom/google/gson/GsonBuilder; but it does not exist. Its class, com.google.gson.GsonBuilder, is available from the foll
SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/G:/sharp/repo ...
- web.xml CharacterEncodingFilter
<!-- SpingMVC字符集过滤器 --> <filter> <filter-name>characterEncodingFilter</filter-n ...
- mysql悲观锁处理赠品库存超卖的情况
处理库存超卖的情况前,先了解下什么是乐观锁和悲观锁,下面的几篇博客已经介绍的比较详细了,我就不在赘述其原理了 [MySQL]悲观锁&乐观锁 对mysql乐观锁.悲观锁.共享锁.排它锁.行锁.表 ...
- .net core文件系统简介
在asp.net core程序中,我们可以通过如下代码开启对Web 根目录内的文件静态访问功能: app.UseStaticFiles(); 如果要提供更高级的选项,例如:将其它的物理文件夹下的文件作 ...
- Java 日期与时间
章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...
- B. Misha and Changing Handles
B. Misha and Changing Handles time limit per test 1 second memory limit per test 256 megabytes input ...
- <深入理解redis>读书笔记
chapter2 键管理与数据结构 对大多数redis解决方案而言,键的命名设计至关重要.对于管理来说,内存消耗和redis性能都与数据结构设计相关.所以对开发者而言,最好有数据结构的命名文档规范. ...
- Day 23:JAVA SE复习
作业 1.多线程下载图片 import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream ...
- @Resource 和@Autowired区别
@Autowired 该注解是由spring提供的 按照类型注入 public class UserService { @Autowired private UserDao userDao; } 这样 ...
- ActorFramework教程对比及规划
牢骚太盛防肠断,风物长宜放眼量. 一.引子 昨天的文章,本来就是想写写ActorFramework的教程内容,结果写着写着偏了,变成了吐槽. 首先,声明一下,自己从未参加过任何LabVIEW培训班,也 ...