B - Sightseeing tour POJ - 1637

https://blog.csdn.net/qq_36551189/article/details/80905345

首先要了解一下欧拉回路的基本思路。

欧拉回路:如果是无向图,那么每一个点连的边的数量为偶数,如果是有向图,那么每一个点的入度要等于出度。

欧拉路径:这个欧拉路径是没有成环的,如果是无向图,那么除了两个点连的边是奇数,其他都是偶数,

如果是有向图,那么除了有一个点入度比出度大1,有一个点的出度比入度大1 ,其他都是入度等于出度。

这个题目的基本思路就涉及到了欧拉回路。

这个地方难处理的就是有无向和有向边的混合,这个无向很难处理,但是这个无向最后都要转化成有向。

根据欧拉回路的一些基本性质我们可以知道,有向图每一个点的入度要等于出度。

所以我们可以先给无向图随意定一个方向然后我们用 d=出度-入度 因为我们随意改变一条边的方向这个d的变化量为2

所以就说明之后改变边的方向并不会改变改变这个d的奇偶性。

根据欧拉回路我们就可以知道我们需要的是这个d==0

这个时候就需要用到最大流,怎么用最大流解决这个问题呢,

就是把d大于0的部分和源点相连,因为d大于0如果是欧拉回路那么就肯定是由其他边d小于0,

其他边d<0说明出度小于入度,也就是说有点的入度会小于出度,就是说在任意给定边的时候有点把边连到了这个d<0的点上面,

说到这里其实这个图就建的差不多了。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <vector>
#include <algorithm>
#include <cstring>
#include <iostream>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int maxn = 1e5 + ;
const int INF = 0x3f3f3f3f;
struct edge {
int u, v, c, f;
edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
};
vector<edge>e;
vector<int>G[maxn];
int level[maxn];//BFS分层,表示每个点的层数
int iter[maxn];//当前弧优化
int m;
void init(int n) {
for (int i = ; i <= n; i++)G[i].clear();
e.clear();
}
void addedge(int u, int v, int c) {
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
void BFS(int s)//预处理出level数组
//直接BFS到每个点
{
memset(level, -, sizeof(level));
queue<int>q;
level[s] = ;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
for (int v = ; v < G[u].size(); v++) {
edge& now = e[G[u][v]];
if (now.c > now.f && level[now.v] < ) {
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f)//DFS寻找增广路
{
if (u == t)return f;//已经到达源点,返回流量f
for (int &v = iter[u]; v < G[u].size(); v++)
//这里用iter数组表示每个点目前的弧,这是为了防止在一次寻找增广路的时候,对一些边多次遍历
//在每次找增广路的时候,数组要清空
{
edge &now = e[G[u][v]];
if (now.c - now.f > && level[u] < level[now.v])
//now.c - now.f > 0表示这条路还未满
//level[u] < level[now.v]表示这条路是最短路,一定到达下一层,这就是Dinic算法的思想
{
int d = dfs(now.v, t, min(f, now.c - now.f));
if (d > ) {
now.f += d;//正向边流量加d
e[G[u][v] ^ ].f -= d;
//反向边减d,此处在存储边的时候两条反向边可以通过^操作直接找到
return d;
}
}
}
return ;
}
int Maxflow(int s, int t) {
int flow = ;
for (;;) {
BFS(s);
if (level[t] < )return flow;//残余网络中到达不了t,增广路不存在
memset(iter, , sizeof(iter));//清空当前弧数组
int f;//记录增广路的可增加的流量
while ((f = dfs(s, t, INF)) > ) {
flow += f;
}
}
return flow;
}
int in[maxn], out[maxn]; int main()
{
int k;
scanf("%d", &k);
while(k--)
{
int n, m;
scanf("%d%d", &n, &m);
init(n + m);
memset(in, , sizeof(in));
memset(out, , sizeof(out));
int s = , t = n + ;
for(int i=;i<=m;i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
out[u]++; in[v]++;
if (w == ) addedge(u, v, );
}
bool flag = false;
for(int i=;i<=n;i++)
{
if ((out[i] - in[i]) & ) flag = true;
else if (out[i] > in[i]) addedge(s, i, (out[i] - in[i]) / );
else if (in[i] > out[i]) addedge(i, t, (in[i] - out[i]) / );
}
if (flag) {
printf("impossible\n");
continue;
}
int ans = Maxflow(s, t);
for(int i=;i<G[].size();i++)
{
edge now = e[G[][i]];
if (now.c != now.f) flag = true;
}
if (flag) printf("impossible\n");
else printf("possible\n");
}
return ;
}

欧拉回路

网络流 + 欧拉回路 = B - Sightseeing tour POJ - 1637的更多相关文章

  1. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  2. 网络流(最大流) POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8628   Accepted: 3636 ...

  3. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

  4. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  5. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

  6. POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)

                                                                Sightseeing tour Time Limit: 1000MS   Me ...

  7. TZOJ 2099 Sightseeing tour(网络流判混合图欧拉回路)

    描述 The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that to ...

  8. POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6448   Accepted: 2654 ...

  9. POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9276   Accepted: 3924 ...

随机推荐

  1. Docker 清理命令 删除所有的镜像和容器

    杀死所有正在运行的容器 docker kill $(docker ps -a -q) 删除所有已经停止的容器 docker rm $(docker ps -a -q) 删除所有未打 dangling ...

  2. bat批处理文件搞定所有系统问题

     bat批处理文件搞定所有系统问题  分类: WINDOWS   -----------bat批处理文件搞定所有系统问题---------   一.查漏补缺——给系统功能添把火  我们的操作系统虽然功 ...

  3. SpringBoot系列(六)集成thymeleaf详解版

    SpringBoot系列(六)集成thymeleaf详解版 1. thymeleaf简介  1. Thymeleaf是适用于Web和独立环境的现代服务器端Java模板引擎.  2. Thymeleaf ...

  4. AJ学IOS(02)UI之按钮操作 点击变换 移动 放大缩小 旋转

    不多说,先上图片看效果,AJ分享,必须精品 这个小程序主要实现点击方向键可以让图标上下左右动还有放大缩小以及旋转的功能,点击图片会显示另一张图片. 点击变换 其实用到了按钮的两个状态,再State C ...

  5. 《JavaScript 模式》读书笔记(6)— 代码复用模式2

    上一篇讲了最简单的代码复用模式,也是最基础的,我们普遍知道的继承模式,但是这种继承模式却有不少缺点,我们下面再看看其它可以实现继承的模式. 四.类式继承模式#2——借用构造函数 本模式解决了从子构造函 ...

  6. threejs 鼠标移动控制模型旋转

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  7. 包、mode模式、if-else语句、switch语句

    目录 包 mode模式 if-else语句 循环 switch语句 包 //1 在同一个包下(文件夹下),包名必须一致 //2 以后,包名就是文件夹的名字 //3 同一个包下,同名函数只能有一个(in ...

  8. [Laravel框架学习一]:Laravel框架的安装以及 Composer的安装

    1.先下载Composer-Setup.exe,下载地址:下载Composer .会自动搜索PHP.exe的安装路径,如果没有,就手动找到php路径下的php.exe. 2.在PHP目录下,打开php ...

  9. SpringMVC视图解析中的 forward: 与 redirect: 前缀

    在 SpringMVC 中,可以指定画面的跳转方式.使用 forward: 前缀实现请求转发跳转,使用 redirect: 前缀实现重定向跳转.有前缀的转发和重定向操作和配置的视图解析器没有关系,视图 ...

  10. blink测试技术介绍

    引言: flink是面向数据流处理和批处理的分布式开源计算框架.2016年阿里巴巴引入flink框架,改造为blink,将其运用到搜索及推荐的离线实时计算中,成功解决了搜索.推荐实时大数据量计算的痛点 ...