树的最小支配集 E - Cell Phone Network POJ - 3659 E. Tree with Small Distances
E - Cell Phone Network
题目大意:
给你一棵树,放置灯塔,每一个节点可以覆盖的范围是这个节点的所有子节点和他的父亲节点,问要使得所有的节点被覆盖的最少灯塔数量。
考虑每一个节点要被覆盖应该如何放置灯塔。
如果一个节点被覆盖 1 该节点放了灯塔 2 该点的父亲节点放了灯塔 3 该点的儿子节点放了灯塔。
dp[u][0] 表示这个节点的儿子节点放了灯塔
dp[u][1] 表示这个点本身放了灯塔
dp[u][2] 表示这个点的父亲节点放了灯塔
转移方程,
dp[u][1] 可以从儿子的三个状态转移 dp[u][1]=min(dp[v][0],dp[v][1],dp[v][2])
dp[u][2] 那么如果要儿子节点被覆盖,要么儿子本身有灯塔,要么儿子的儿子有灯塔 dp[u][2]=min(dp[v][0],dp[v][1])
dp[u][0] 这个是这个节点的儿子节点放了灯塔,但是如果这个节点有很多个儿子,我们只要其中一个即可
所以这个转移比较复杂,可以像之前的 E. Paint the Tree 树形dp 这个一样的去处理。
不过这个对于子节点选dp[v][1]的限制是只要一个即可,所以可以用一个更简单的方法。
设置一个变量dif,dif=min(dp[v][1]-dp[v][0],dif)
最后在加上这个dif即可,其实两个本质上是一样的。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <bitset>
#include <vector>
#include <map>
#include <string>
#include <cstring>
#include <bitset>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=3e5+;
typedef long long ll;
vector<int>G[maxn];
void add(int u,int v){
G[u].push_back(v);
G[v].push_back(u);
}
int n;
void read(){
scanf("%d",&n);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
}
int dp[maxn][];
void dfs(int u,int pre){
dp[u][]=;
dp[u][]=;
dp[u][]=;
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==pre) continue;
dfs(v,u);
dp[u][]+=min(dp[v][],min(dp[v][],dp[v][]));
dp[u][]+=min(dp[v][],dp[v][]);
dp[u][]+=dp[v][];
}
vector<int>val;val.clear();
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==pre) continue;
val.push_back(dp[v][]-dp[v][]);
}
if(val.size()==) dp[u][]=inf;
sort(val.begin(),val.end());
if(val.size()&&val[]>) dp[u][]+=val[];
else {
for(int i=;i<val.size();i++){
if(val[i]>) break;
dp[u][]+=val[i];
}
}
// printf("dp[%d][0]=%d dp[%d][1]=%d dp[%d][2]=%d\n",u,dp[u][0],u,dp[u][1],u,dp[u][2]);
} int main(){
read();
dfs(,-);
printf("%d\n",min(dp[][],dp[][]));
return ;
}
题目差不多。
题目大意:
给你一棵树,要求这棵树的根节点1 到 每一个点的距离要小于等于2 增加的最少的路数。
仔细比划比划 就发现和上面是一样的题目。
只是要标记一下本来就和根节点1 距离小于等于2的所有节点,这些节点的转移有一点不一样,其他都是一样的。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
#include <stack>
#include <bitset>
#include <vector>
#include <map>
#include <string>
#include <cstring>
#include <bitset>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=2e5+;
typedef long long ll;
vector<int>G[maxn];
int vis[maxn];
void add(int u,int v){
G[u].push_back(v);
G[v].push_back(u);
}
int n;
void read(){
scanf("%d",&n);
for(int i=;i<n;i++){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
}
int dp[maxn][];
void dfs(int u,int pre){
dp[u][]=;
dp[u][]=;
dp[u][]=;
int dif=inf;
for(int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==pre) continue;
dfs(v,u);
if(vis[u]){
dp[u][]+=min(dp[v][],dp[v][]);
dp[u][]+=min(dp[v][],min(dp[v][],dp[v][]));
dp[u][]+=min(dp[v][],dp[v][]);
}
else{
dp[u][]+=min(dp[v][],min(dp[v][],dp[v][]));
dp[u][]+=min(dp[v][],dp[v][]);
dp[u][]+=min(dp[v][],dp[v][]);
dif=min(dp[v][]-min(dp[v][],dp[v][]),dif);
}
}
if(vis[u]) return ;
dp[u][]+=dif;
} void init(int u,int pre){
vis[u]=;
for(int i=;i<G[u].size();i++){
int v=G[u][i];
vis[v]=;
for(int j=;j<G[v].size();j++){
int x=G[v][j];
vis[x]=;
}
}
} int main(){
read();
init(,-);
dfs(,-);
printf("%d\n",min(dp[][],dp[][]));
return ;
}
树的最小支配集 E - Cell Phone Network POJ - 3659 E. Tree with Small Distances的更多相关文章
- POJ 3659 Cell Phone Network(树的最小支配集)(贪心)
Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6781 Accepted: 242 ...
- 树形dp compare E - Cell Phone Network POJ - 3659 B - Strategic game POJ - 1463
B - Strategic game POJ - 1463 题目大意:给你一棵树,让你放最少的东西来覆盖所有的边 这个题目之前写过,就是一个简单的树形dp的板题,因为这个每一个节点都需要挺好处 ...
- 树形DP求树的最小支配集,最小点覆盖,最大独立集
一:最小支配集 考虑最小支配集,每个点有两种状态,即属于支配集合或者不属于支配集合,其中不属于支配集合时此点还需要被覆盖,被覆盖也有两种状态,即被子节点覆盖或者被父节点覆盖.总结起来就是三种状态,现对 ...
- 树形DP 树的最小支配集,最小点覆盖与最大独立集
最小支配集: 从V中选取尽量少的点组成一个集合,让V中剩余的点都与取出来的点有边相连. (点) 最小点覆盖: 从V中选取尽量少的点组成一个集合V1,让所有边(u,v)中要么u属于V1,要么v属于V1 ...
- POJ 3398 Perfect Service(树型动态规划,最小支配集)
POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...
- 树的问题小结(最小生成树、次小生成树、最小树形图、LCA、最小支配集、最小点覆盖、最大独立集)
树的定义:连通无回路的无向图是一棵树. 有关树的问题: 1.最小生成树. 2.次小生成树. 3.有向图的最小树形图. 4.LCA(树上两点的最近公共祖先). 5.树的最小支配集.最小点覆盖.最大独立集 ...
- 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp
目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...
- POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法
POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
随机推荐
- 手动搭建I/O网络通信框架4:AIO编程模型,聊天室终极改造
第一章:手动搭建I/O网络通信框架1:Socket和ServerSocket入门实战,实现单聊 第二章:手动搭建I/O网络通信框架2:BIO编程模型实现群聊 第三章:手动搭建I/O网络通信框架3:NI ...
- pgsql中的事务隔离
pgsql中的事务隔离级别 前言 事物隔离级别 在各个级别上被禁止出现的现象是 脏读 不可重复读 幻读 序列化异常 读已提交隔离级别 可重复读隔离级别 可序列化隔离级别 摘录 pgsql中的事务隔离级 ...
- Redis之quicklist源码分析
一.quicklist简介 Redis列表是简单的字符串列表,按照插入顺序排序.你可以添加一个元素到列表的头部(左边)或者尾部(右边). 一个列表最多可以包含 232 - 1 个元素 (4294967 ...
- 005-循环结构(上)-C语言笔记
005-循环结构(上)-C语言笔记 学习目标 1.[掌握]switch-case结构 2.[理解]case语句穿透 3.[理解]Xcode断点调试 4.[理解]while循环结构初体验 5.[掌握]w ...
- AJ学IOS 之微博项目实战(2)微博主框架-自定义导航控制器NavigationController
AJ分享,必须精品 一:添加导航控制器 上一篇博客完成了对底部的TabBar的设置,这一章我们完成自定义导航控制器(NYNavigationController). 为啥要做自定义呢,因为为了更好地封 ...
- [算法总结]康托展开Cantor Expansion
目录 一.关于康托展开 1.什么是康托展开 2.康托展开实现原理 二.具体实施 1.模板 一.关于康托展开 1.什么是康托展开 求出给定一个由1n个整数组成的任意排列在1n的全排列中的位置. 解决这样 ...
- 泛型方法或泛型类中的方法是内部调用、PInvoke 或是在 COM 导入类中定义的。
泛型基类中引用Api函数定义时static extern,在子类中会提示: 未处理TypeLoadException 泛型方法或泛型类中的方法是内部调用.PInvoke 或是在 COM 导入类中定义的 ...
- Python语言-selenium webdriver操作记录汇总
1.控制浏览器大小 set_window_size() 设置浏览器大小 该方法有两个参数,第一个参数是宽,第二个是高 maximize_window() 设置浏览器全屏显示,无参数 chrome谷歌浏 ...
- 1个工具,助你提升K8S故障排查效率!
Kubernetes的故障排查一直困扰众多运维团队或DevOps,除了Kubernetes本身的复杂性之外,还有Kubernetes的工作负载是动态的原因.本文将介绍1个工具可以帮助你可视化K8S的网 ...
- POJ 跳蚤
Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最后一个是M ...