Just determine whether an algebraic expression can always simplify to zero.

Input

The first line contains a single integer T, indicating the number of test cases.
Each test case starts with an integer N, the number of tokens that describes a formula. The next N tokens describe a formula in reverse polish notation.

The notation works as follows. There is a stack that begins empty, and only the following commands manipulate the contents of the stack:

1. “x” pushes the variable x to the stack.

2. “sin”, “cos”, and “tan” replace the top element of the stack with its sin, cos, and tan, respectively.

3. “+”, “-”, and “*” replace the top two elements of the stack (a on top, followed by b) with their sum(b + a), difference (b − a), and product (b ∗ a), respectively.

You may assume that the input is valid, and results in a single item on the stack, which is the desired expression. The length of a line will be at most 300 characters. Note function arguments can contain functions.

 

Output

For each test case, output the case number first, then “Yes” if the expression is always zero, otherwise output “No”.
 

Sample Input

2

3 x sin sin

15 x sin x sin * x cos x cos * + x * x -

 

Sample Output

Case 1: No

Case 2: Yes

题意:判断表达式是否恒为0
思路:因为三角函数都是周期性变化的,所以我们可以枚举x来计算,但是精度自己内心也不确定,就按0.0001的精度累加,也A了
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stack>
#include <math.h>
using namespace std; #define pi acos(-1.0) stack<double> S;
char str[305][10]; int main()
{
int t,n,i,j,cas = 1;
int flag;
double x,y,z;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i = 0; i<n; i++)
scanf("%s",str[i]);
flag = 1;
for(x = -2.0; x<=2.0; x+=0.0001)//枚举x
{
for(j = 0; j<n; j++)
{
if(!strcmp(str[j],"x"))
S.push(x);
else if(!strcmp(str[j],"sin"))
{
y = S.top();
S.pop();
y = sin(y);
S.push(y);
}
else if(!strcmp(str[j],"cos"))
{
y = S.top();
S.pop();
y = cos(y);
S.push(y);
}
else if(!strcmp(str[j],"tan"))
{
y = S.top();
S.pop();
y = tan(y);
S.push(y);
}
else if(!strcmp(str[j],"+"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = y+z;
S.push(y);
}
else if(!strcmp(str[j],"-"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = z-y;
S.push(y);
}
else if(!strcmp(str[j],"*"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = y*z;
S.push(y);
}
}
y = S.top();
S.pop();
if(fabs(y)<1e-8 && S.empty())
continue;
else
{
flag = 0;
break;
}
}
printf("Case %d: ",cas++);
if(flag)
printf("Yes\n");
else
printf("No\n");
} return 0;
}

BNU29368:Check the Identity(栈)的更多相关文章

  1. bnuoj 29368 Check the Identity(栈)

    http://www.bnuoj.com/bnuoj/problem_show.php?pid=29368 [题解]:模拟,然后对x,进行枚举,看是否所有都满足条件 [code]: #include ...

  2. 【ASP.NET Identity系列教程(二)】运用ASP.NET Identity

    注:本文是[ASP.NET Identity系列教程]的第二篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序 ...

  3. ASP.NET Identity 二 (转载)

    来源:http://www.cnblogs.com/r01cn/p/5180892.html#undefined 推荐看原文,这里转载是怕好文章消失了. 注:本文是[ASP.NET Identity系 ...

  4. ASP.NET Identity系列教程-3【运用ASP.NET Identity】

    https://www.cnblogs.com/r01cn/p/5180892.html 14 运用ASP.NET Identity In this chapter, I show you how t ...

  5. 关于refs/for/ 和refs/heads/

    1.     这个不是git的规则,而是gerrit的规则, 2.     Branches, remote-tracking branches, and tags等等都是对commite的引用(re ...

  6. CLR via C# 3rd - 05 - Primitive, Reference, and Value Types

    1. Primitive Types        Any data types the compiler directly supports are called primitive types. ...

  7. [转]Installing SharePoint 2013 on Windows Server 2012 R2

    转自:http://www.avivroth.com/2013/07/09/installing-sharepoint-2013-on-windows-server-2012-r2-preview/ ...

  8. 《Effective C#》:区别和认识四个判等函数

    .Net有四个判等函数?不少人看到这个标题,会对此感到怀疑.事实上确是如此,.Net提供了ReferenceEquals.静态Equals,具体类型的Equals以及==操作符这四个判等函数.但是这四 ...

  9. 【转】区别和认识.Net四个判等函数

    原文地址:不详 .Net有四个判等函数?不少人看到这个标题,会对此感到怀疑.事实上确是如此,.Net提供了ReferenceEquals.静态Equals,具体类型的Equals以及==操作符这四个判 ...

随机推荐

  1. iOS自学之NSOperation、NSOperationQueue、Background

    iOS中多线程编程主要分为NSThread.NSOperation和GCD,今天主要记录下自己在学习NSOperation中的点滴-如有不对的地方帮忙指出下,PS:人生第一次写blog,各位看官请轻虐 ...

  2. OC5_NSMutableString操作

    // // main.m // OC5_NSMutableString操作 // // Created by zhangxueming on 15/6/10. // Copyright (c) 201 ...

  3. Java实战之02Hibernate-02映射、一级缓存、实体对象状态

    五.映射基础 1.实体类采用javabean的编写规范 JavaBean编写规范: a.类一般是public的 b.有默认的构造方法 c.字段都是私有的 d.提供公有的getter和setter方法 ...

  4. 10_HTTP协议_入门知识

    [什么是HTTP协议] 对 浏览器客户端 和  服务器端之间的数据传输的格式规范. 客户端连上web服务器后,若想获得web服务器中的某个web资源,需遵循一定的通讯格式,HTTP协议用于定义客户端与 ...

  5. Google 编码风格

    一.Google JavaScript编码风格 简体中文版 Google JavaScript Style Guide 二.Google HTML/CSS代码风格指南 简体中文版 三.Google C ...

  6. NHibernate多对多关联映射的实现

    上次用EF演示了数据库多对多关系的操作,这次我们还是引用上次的案例,来演示如何在C#当中使用NHibernate. 首先介绍一下NHibernate框架的来源.熟悉Java编程的读者肯定知道Hiber ...

  7. lispbox 安装运行.sh的时候出现 lispbox.sh: 2: lispbox.sh: Bad substitution

    安装lispbox时使用tar命令将压缩文件解压之后cd进入之后在运行.sh文件时出现了如下情况. $ sh lispbox.sh lispbox.: lispbox.sh: Bad substitu ...

  8. Cassandra1.2文档学习(4)——分区器

    参考文档:http://www.datastax.com/documentation/cassandra/1.2/webhelp/index.html#cassandra/architecture/a ...

  9. Angular 动态生成html中 ng-click无效

    bodyApp.controller('customersCtrl', function ($scope, $http, cfpLoadingBar,$compile) { $scope.test = ...

  10. js电话号码正则校验--座机和手机号

    1.最新的电话号码段: 移动:134(1349除外)135 136 137 138 139 147 150 151 152 157 158 159 182 183 184 187 188 联通: 13 ...