Just determine whether an algebraic expression can always simplify to zero.

Input

The first line contains a single integer T, indicating the number of test cases.
Each test case starts with an integer N, the number of tokens that describes a formula. The next N tokens describe a formula in reverse polish notation.

The notation works as follows. There is a stack that begins empty, and only the following commands manipulate the contents of the stack:

1. “x” pushes the variable x to the stack.

2. “sin”, “cos”, and “tan” replace the top element of the stack with its sin, cos, and tan, respectively.

3. “+”, “-”, and “*” replace the top two elements of the stack (a on top, followed by b) with their sum(b + a), difference (b − a), and product (b ∗ a), respectively.

You may assume that the input is valid, and results in a single item on the stack, which is the desired expression. The length of a line will be at most 300 characters. Note function arguments can contain functions.

 

Output

For each test case, output the case number first, then “Yes” if the expression is always zero, otherwise output “No”.
 

Sample Input

2

3 x sin sin

15 x sin x sin * x cos x cos * + x * x -

 

Sample Output

Case 1: No

Case 2: Yes

题意:判断表达式是否恒为0
思路:因为三角函数都是周期性变化的,所以我们可以枚举x来计算,但是精度自己内心也不确定,就按0.0001的精度累加,也A了
 
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stack>
#include <math.h>
using namespace std; #define pi acos(-1.0) stack<double> S;
char str[305][10]; int main()
{
int t,n,i,j,cas = 1;
int flag;
double x,y,z;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i = 0; i<n; i++)
scanf("%s",str[i]);
flag = 1;
for(x = -2.0; x<=2.0; x+=0.0001)//枚举x
{
for(j = 0; j<n; j++)
{
if(!strcmp(str[j],"x"))
S.push(x);
else if(!strcmp(str[j],"sin"))
{
y = S.top();
S.pop();
y = sin(y);
S.push(y);
}
else if(!strcmp(str[j],"cos"))
{
y = S.top();
S.pop();
y = cos(y);
S.push(y);
}
else if(!strcmp(str[j],"tan"))
{
y = S.top();
S.pop();
y = tan(y);
S.push(y);
}
else if(!strcmp(str[j],"+"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = y+z;
S.push(y);
}
else if(!strcmp(str[j],"-"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = z-y;
S.push(y);
}
else if(!strcmp(str[j],"*"))
{
y = S.top();
S.pop();
z = S.top();
S.pop();
y = y*z;
S.push(y);
}
}
y = S.top();
S.pop();
if(fabs(y)<1e-8 && S.empty())
continue;
else
{
flag = 0;
break;
}
}
printf("Case %d: ",cas++);
if(flag)
printf("Yes\n");
else
printf("No\n");
} return 0;
}

BNU29368:Check the Identity(栈)的更多相关文章

  1. bnuoj 29368 Check the Identity(栈)

    http://www.bnuoj.com/bnuoj/problem_show.php?pid=29368 [题解]:模拟,然后对x,进行枚举,看是否所有都满足条件 [code]: #include ...

  2. 【ASP.NET Identity系列教程(二)】运用ASP.NET Identity

    注:本文是[ASP.NET Identity系列教程]的第二篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序 ...

  3. ASP.NET Identity 二 (转载)

    来源:http://www.cnblogs.com/r01cn/p/5180892.html#undefined 推荐看原文,这里转载是怕好文章消失了. 注:本文是[ASP.NET Identity系 ...

  4. ASP.NET Identity系列教程-3【运用ASP.NET Identity】

    https://www.cnblogs.com/r01cn/p/5180892.html 14 运用ASP.NET Identity In this chapter, I show you how t ...

  5. 关于refs/for/ 和refs/heads/

    1.     这个不是git的规则,而是gerrit的规则, 2.     Branches, remote-tracking branches, and tags等等都是对commite的引用(re ...

  6. CLR via C# 3rd - 05 - Primitive, Reference, and Value Types

    1. Primitive Types        Any data types the compiler directly supports are called primitive types. ...

  7. [转]Installing SharePoint 2013 on Windows Server 2012 R2

    转自:http://www.avivroth.com/2013/07/09/installing-sharepoint-2013-on-windows-server-2012-r2-preview/ ...

  8. 《Effective C#》:区别和认识四个判等函数

    .Net有四个判等函数?不少人看到这个标题,会对此感到怀疑.事实上确是如此,.Net提供了ReferenceEquals.静态Equals,具体类型的Equals以及==操作符这四个判等函数.但是这四 ...

  9. 【转】区别和认识.Net四个判等函数

    原文地址:不详 .Net有四个判等函数?不少人看到这个标题,会对此感到怀疑.事实上确是如此,.Net提供了ReferenceEquals.静态Equals,具体类型的Equals以及==操作符这四个判 ...

随机推荐

  1. 自动生存Makefile教程 autoscan aclocal autoconf autoheader automake configure

    LZ没学过makefile的写法,只知道使用tab.于是乎发现了autotools系列工具 基本流程是:autoscan.aclocal.autoconf.autoheader.automake.co ...

  2. ###学习《C++ Primer》- 1

    点击查看Evernote原文. #@author: gr #@date: 2014-09-30 #@email: forgerui@gmail.com 记录读书过程中一些知识点.可能不系统,:-). ...

  3. [记录 ]升级IOS 9 和 XCode 7 引起的问题

    问题一: 升级xcode 7最低的系统配置要求 升级了ios9 后使用 xcode 6.1 已经不能用了,必须升级 xcode 7才行,原先的系统是OSX 10.10.1 版本.而xcode 7.0 ...

  4. 几个动画demo

    一.点击扩散效果 这个效果没什么难度,主要是加深对核心动画的理解和使用,但是还是有几个想说明的地方.先看一下效果,具体内容代码里有注释. // // CircleButton.m // UITest ...

  5. OC1_银行账户类

    // // BankAccount.h // OC1_银行账户类 // // Created by zhangxueming on 15/6/10. // Copyright (c) 2015年 zh ...

  6. Dorado浏览器调试

    通常在项目中我们对js脚本进行调试有以下2种方式: alert调试法 首先是最原始也是最简单的使用alert,在页面中需要输出需要的变量的地方加上alert函数,将变量弹出显示:alert方式虽然简单 ...

  7. Web前端新人笔记之CSS值和单位

    数字 颜色——命名颜色 在Css2.1中规范定义了17个颜色名.包括html4.0中定义的16个颜色及外加一个橙色: <h1 style="color=aqua">aq ...

  8. 图片裁切插件jCrop的使用心得(三)

    在这一篇里,我来具体讲讲代码该如何写. 下面是jCrop的初始化代码 //图片裁剪插件Jcrop初始化 function initJcrop() { // 图片加载完成 document.getEle ...

  9. Vijos p1002 过河 离散化距离+区间DP

    链接:https://vijos.org/p/1002 题意:一条长度为L(L <= 1e9)的桥上有N(1<= N <= 100)颗石头.桥的起点为0终点为L.一只青蛙从0开始跳, ...

  10. codeforces 8VC Venture Cup 2016 - Elimination Round C. Lieges of Legendre

    C. Lieges of Legendre 题意:给n,m表示有n个为2的倍数,m个为3的倍数:问这n+m个数不重复时的最大值 最小为多少? 数据:(0 ≤ n, m ≤ 1 000 000, n + ...