题意: 有n种小工具要加工,每种工具的加工时间为3到9天,给了m条加工记录。

    每条记录 X $s_1$ $s_2$ 分别代表 这个工人在$s_1$到$s_2$(前闭后闭)的时间里加工了X件小工具

    下一行给出这X件小工具的种类

  要求的是每件工具的加工时间 (唯一解:输出各个时间;无解:Inconsistent data.;多个解:Multiple solutions.)

可以列出同余方程组:$\sum\limits_{i=0}^{n-1} a_i×x_i\equiv T \pmod{7}$

          ($a_i$是此人加工第i件物品的个数,$x_i$是第i件物品加工所需的时间,T是此人干活的时间)

     这样列出m个同余方程 组成方程组 用高斯消元

比如第一个案例:

2 3
2 MON THU
1 2
3 MON FRI
1 1 2
3 MON SUN
1 2 2 可以列出方程组:  

1×$x_0$+1×$x_1 \equiv 4 \pmod{7}$

2×$x_0$+1×$x_1 \equiv 5 \pmod{7}$

1×$x_0$+2×$x_1 \equiv 7 \pmod{7}$

\[ \left( \begin{array}{ccc}
1 & 1 & 4 \\
2 & 1 & 5 \\
1 & 2 & 7 \end{array} \right) \to \left( \begin{array}{ccc}
1 & 1 & 4 \\
1 & 0 & 1 \\
0 & 1 & 3 \end{array} \right) \to \left( \begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0 \end{array} \right)\]

即得$x_0$=1,$x_1$=3
由题意 每种工具的加工时间为3到9天
故 $x_0$=8,$x_1$=3
解毕

下面是代码:

有mod就会有要求逆元
两种求逆元的方法 1. extend gcd
注意得到的x可能为负 要x=(x%mod+mod)%mod;
 void ex_gcd(int a, int b, int &x, int &y)
{
if(b)
{
ex_gcd(b, a%b, x, y);
int tmp=x;
x=y;
y=tmp-(a/b)*y;
}
else
{
x=, y=;
return ;
}
}

2.inverse element

注意  只适用于a<b 并且 ab互质

 int inv(int a, int b)
{
return a==? :inv(b%a, b)*(b-b/a)%b;
}

此题还有一法不求逆元:(利用欧拉函数)

即 把被除数不断加上mod 直到它能被除数整除为止

 while(tmp%a[i][i])
tmp+=mod;
x[i]=(tmp/a[i][i])%mod; 与以下等价 int xx, yy;
ex_gcd(a[i][i], mod, xx, yy);
xx=(xx%mod+mod)%mod;
x[i]=(tmp*xx)%mod; 与以下等价 x[i]=(tmp*inv(a[i][i], mod))%mod;

完整代码:

 const int mod=;
int gcd(int a, int b)
{
return b==? a:gcd(b, a%b);
}
int lcm(int a, int b)
{
return a/gcd(a, b)*b;
}
void ex_gcd(int a, int b, int &x, int &y)
{
if(b)
{
ex_gcd(b, a%b, x, y);
int tmp=x;
x=y;
y=tmp-(a/b)*y;
}
else
{
x=, y=;
return ;
}
} int a[][]; // 增广矩阵
int x[]; // 解
int free_x[]; // 标记是否为自由未知量 int Gauss(int n, int m) // n个方程 m个未知数 即 n行m+1列
{
//转换为阶梯形式
int col=, k, num=;
for(k=;k<n && col<m;k++, col++)
{//枚举行
int max_r=k;
for(int i=k+;i<n;i++)//找到第col列元素绝对值最大的那行与第k行交换
if(abs(a[i][col])>abs(a[max_r][col]))
max_r=i;
if(max_r!=k)// 与第k行交换
for(int j=col;j<m+;j++)
swap(a[k][j], a[max_r][j]);
if(!a[k][col])// 说明该col列第k行以下全是0了
{
k--;
free_x[num++]=col;
continue;
}
for(int i=k+;i<n;i++)// 枚举要删除的行
if(a[i][col])
{
int LCM=lcm(abs(a[i][col]), abs(a[k][col]));
int ta=LCM/abs(a[i][col]);
int tb=LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<)
tb=-tb;
for(int j=col;j<m+;j++)
a[i][j]=((a[i][j]*ta-a[k][j]*tb)%mod+mod)%mod;
}
} for(int i=k;i<n;i++)
if(a[i][col])
return -; // 无解 if(k<m) //m-k为自由未知量个数
return m-k; // 唯一解 回代
for(int i=m-;i>=;i--)
{
int tmp=a[i][m];
for(int j=i+;j<m;j++)
{
if(a[i][j])
tmp-=a[i][j]*x[j];
tmp=(tmp%+)%;
}
int xx, yy;
ex_gcd(a[i][i], mod, xx, yy);
xx=(xx%mod+mod)%mod;
x[i]=(tmp*xx)%mod;
}
return ;
} void init()
{
memset(a, , sizeof(a));
memset(x, , sizeof(x));
} int change(char c1, char c2)
{
if(c1=='M')
return ;
if(c1=='T' && c2=='U')
return ;
if(c1=='W')
return ;
if(c1=='T')
return ;
if(c1=='F')
return ;
if(c1=='S' && c2=='A')
return ;
return ;
} char s1[], s2[];
int main()
{
int n, m;
while(~scanf("%d%d", &n, &m))
{
if(!n && !m)
break;
init();
for(int i=;i<m;i++)
{
int X;
scanf("%d%s%s", &X, s1, s2);
a[i][n]=((change(s2[], s2[])-change(s1[], s1[])+)%mod+mod)%mod;
while(X--)
{
int t;
scanf("%d", &t);
a[i][t-]=(a[i][t-]+)%mod;
}
}
int t=Gauss(m, n);
if(t==-)
{
printf("Inconsistent data.\n");
continue;
}
if(t==)
{
for(int i=;i<n;i++)
if(x[i]<=)
x[i]+=;
for(int i=;i<n;i++)
{
printf("%d", x[i]);
if(i==n-)
printf("\n");
else
printf(" ");
}
continue;
}
printf("Multiple solutions.\n");
}
return ;
}

POJ 2947

[Gauss]POJ2947 Widget Factory的更多相关文章

  1. Widget Factory (高斯消元解线性方程组)

    The widget factory produces several different kinds of widgets. Each widget is carefully built by a ...

  2. 【POJ】2947 Widget Factory(高斯消元)

    http://poj.org/problem?id=2947 各种逗啊..还好1a了.. 题意我就不说了,百度一大把. 转换为mod的方程组,即 (x[1,1]*a[1])+(x[1,2]*a[2]) ...

  3. POJ Widget Factory 【求解模线性方程】

    传送门:http://poj.org/problem?id=2947 Widget Factory Time Limit: 7000MS   Memory Limit: 65536K Total Su ...

  4. UVA 1564 - Widget Factory(高斯消元)

    UVA 1564 - Widget Factory 题目链接 题意:n种零件, 给定m个制作时间.每段时间制作k个零件,每种零件有一个制作时间,每段时间用Mon到Sun表示,求每一个零件的制作时间.还 ...

  5. POJ 2947:Widget Factory 求同余方程

    Widget Factory Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 5173   Accepted: 1790 De ...

  6. POJ 2947 Widget Factory(高斯消元)

    Description The widget factory produces several different kinds of widgets. Each widget is carefully ...

  7. 使用 jQuery UI Widget Factory 编写有状态的插件(Stateful Plugins)

    使用 jQuery UI Widget Factory 编写有状态的插件(Stateful Plugins) Note 这一章节的内容是基于 Scott Gonzalez 一篇博客 Building ...

  8. poj 2947 Widget Factory

    Widget Factory 题意:有n件装饰品,有m组信息.(1 <= n ,m<= 300)每组信息有开始的星期和结束的星期(是在mod 7范围内的)并且还包括num种装饰品的种类(1 ...

  9. 软件公司的两种管理方式 总体来说,这个世界上存在两种不同的软件公司的组织结构。我把他们叫做 Widget Factory(小商品工厂) 和 Film Crews(电影工作组

    软件公司的两种管理方式 一个简单的回答应该是——“因为在我们的社会里,我们总是会认为薪水和会和职位的层次绑在一起”.但是,这个答案同时也折射出一个事实——我们的薪资是基于我们的所理解的价值,但这并没有 ...

随机推荐

  1. DevExpress的 ASPxGridview控件的自动配置效果

    [淘宝小店:http://shop107919332.taobao.com ] 软件运行界面.是不是很漂亮? 这里是系统配置页面,可以随时根据需要配置每张表的每个字段的显示顺序,可见与否,只读与否,编 ...

  2. Fluent Validation For .NET

    //.net 中数据验证,一个开源的项目,直接下载 1 using FluentValidation; public class CustomerValidator: AbstractValidato ...

  3. (十一)Hibernate 高级配置

    第一节:配置数据库连接池 反问数据库,需要不断的创建和释放连接,假如访问量大的话,效率比较低级,服务器消耗大: 使用数据库连接池,我们可以根据实际项目的情况,定义连接池的连接个数,从而可以实现从连接池 ...

  4. 安卓Handler机制的例子

    Handler机制是实现线程之间通讯的一种很常见的方法,很多时候都会用到. package com.lab.activity; import android.app.Activity; import ...

  5. Java Web开发中的名词解释

    1.JVM Java虚拟机,class文件的运行时环境,就好比软件运行在操作系统一样,java要运行在JVM中才行,这也是Java之所以支持扩平台的基础. 2.Servlet/JSP 是满足一定接口需 ...

  6. Java Web开发之Servlet、JSP基础

    有好多年不搞Java Web开发了,这几天正好国庆放假,放松之余也有兴趣回头看看Java Web开发技术的基础. 我们都知道,Servlet是Java Web开发的重要基础,但是由于Servlet开发 ...

  7. Android Studio API 文档_下载与使用

    如何下载API 说明: 时间: 2016/7/9 根据百度经验步骤改编(百度经验), 但是比它更好, 亲测可用 1.1 下载API文档: 1.1.1 SDK Manager 1.1.2 1.1.3 ( ...

  8. SAP Java Connector(JCo)

    JCo是一个高性能的,基于JNI的中间件,它实现了SAP的RFC(Remote Function Call)协议. 1.JCo的安装 从 http://files.cnblogs.com/byfhd/ ...

  9. 纯原生js移动端城市选择插件

    接着上一篇纯js移动端日期选择插件,话说今天同事又来咨询省市县联动的效果在移动端中如何实现,还是老样子,百度上一搜,诶~又全是基于jquery.zepto的,更加可恨的是大多数都是PC版的,三个sel ...

  10. gentoo下grub文件编辑

    在编译完内核,配置好网络,配置好fstab文件等等,最后一个至关重要的文件要属grub文件了,该文件的配置成功才最终决定gentoo 是否成功装上,首先当然是 emerge grub 了,现在就可以配 ...