UVa12304
基础题,注意精度和旋转方向。
- #include <iostream>
- #include <math.h>
- #include <vector>
- #include <algorithm>
- #include <string>
- using namespace std;
- #define PI acos(-1.0)
- #define M 100007
- #define N 65736
- const int inf = 0x7f7f7f7f;
- const int mod = 1000000007;
- const double eps = 1e-6;
- struct Point
- {
- double x, y;
- Point(double tx = 0, double ty = 0) : x(tx), y(ty){}
- };
- typedef Point Vtor;
- //向量的加减乘除
- Vtor operator + (Vtor A, Vtor B) { return Vtor(A.x + B.x, A.y + B.y); }
- Vtor operator - (Point A, Point B) { return Vtor(A.x - B.x, A.y - B.y); }
- Vtor operator * (Vtor A, double p) { return Vtor(A.x*p, A.y*p); }
- Vtor operator / (Vtor A, double p) { return Vtor(A.x / p, A.y / p); }
- bool operator < (Point A, Point B) { return A.x < B.x || (A.x == B.x && A.y < B.y); }
- int dcmp(double x){ if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }
- bool operator == (Point A, Point B) { return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0; }
- //向量的点积,长度,夹角
- double Dot(Vtor A, Vtor B) { return (A.x*B.x + A.y*B.y); }
- double Length(Vtor A) { return sqrt(Dot(A, A)); }
- double Angle(Vtor A, Vtor B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
- //叉积,三角形面积
- double Cross(Vtor A, Vtor B) { return A.x*B.y - A.y*B.x; }
- double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); }
- //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
- Vtor Rotate(Vtor A, double rad){ return Vtor(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); }
- Vtor Normal(Vtor A)
- {
- double L = Length(A);
- return Vtor(-A.y / L, A.x / L);
- }
- //直线的交点
- Point GetLineIntersection(Point P, Vtor v, Point Q, Vtor w)
- {
- Vtor u = P - Q;
- double t = Cross(w, u) / Cross(v, w);
- return P + v*t;
- }
- //点到直线的距离
- double DistanceToLine(Point P, Point A, Point B)
- {
- Vtor v1 = B - A;
- return fabs(Cross(P - A, v1)) / Length(v1);
- }
- //点到线段的距离
- double DistanceToSegment(Point P, Point A, Point B)
- {
- if (A == B) return Length(P - A);
- Vtor v1 = B - A, v2 = P - A, v3 = P - B;
- if (dcmp(Dot(v1, v2)) < 0) return Length(v2);
- else if (dcmp(Dot(v1, v3)) > 0) return Length(v3);
- else return fabs(Cross(v1, v2)) / Length(v1);
- }
- //点到直线的映射
- Point GetLineProjection(Point P, Point A, Point B)
- {
- Vtor v = B - A;
- return A + v*Dot(v, P - A) / Dot(v, v);
- }
- //判断线段是否规范相交
- bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
- {
- double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
- c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
- return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
- }
- //判断点是否在一条线段上
- bool OnSegment(Point P, Point a1, Point a2)
- {
- return dcmp(Cross(a1 - P, a2 - P)) == 0 && dcmp(Dot(a1 - P, a2 - P)) < 0;
- }
- //多边形面积
- double PolgonArea(Point *p, int n)
- {
- double area = 0;
- for (int i = 1; i < n - 1; ++i)
- area += Cross(p[i] - p[0], p[i + 1] - p[0]);
- return area / 2;
- }
- struct Line
- {
- Point p, b;
- Vtor v;
- Line(){}
- Line(Point a, Point b, Vtor v) : p(a), b(b), v(v) {}
- Line(Point p, Vtor v) : p(p), v(v){}
- Point point(double t) { return p + v*t; }
- };
- struct Circle
- {
- Point c;
- double r;
- Circle(Point tc, double tr) : c(tc), r(tr){}
- Point point(double a)
- {
- return Point(c.x + cos(a)*r, c.y + sin(a)*r);
- }
- };
- //判断圆与直线是否相交以及求出交点
- int getLineCircleIntersection(Line L, Circle C, double &t1, double &t2, vector<Point> &sol)
- {
- // printf(">>>>>>>>>>>>>>>>>>>>>>>>\n");
- //注意sol没有清空哦
- double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
- double e = a*a + c*c, f = 2 * (a*b + c*d), g = b*b + d*d - C.r*C.r;
- double delta = f*f - 4.0*e*g;
- if (dcmp(delta) < 0) return 0;
- else if (dcmp(delta) == 0)
- {
- t1 = t2 = -f / (2.0*e);
- sol.push_back(L.point(t1));
- return 1;
- }
- t1 = (-f - sqrt(delta)) / (2.0 * e); sol.push_back(L.point(t1));
- t2 = (-f + sqrt(delta)) / (2.0 * e); sol.push_back(L.point(t2));
- return 2;
- }
- //判断并求出两圆的交点
- double angle(Vtor v) { return atan2(v.y, v.x); }
- int getCircleIntersection(Circle C1, Circle C2, vector<Point> &sol)
- {
- double d = Length(C1.c - C2.c);
- // 圆心重合
- if (dcmp(d) == 0)
- {
- if (dcmp(C1.r - C2.r) == 0) return -1; // 两圆重合
- return 0; // 包含
- }
- // 圆心不重合
- if (dcmp(C1.r + C2.r - d) < 0) return 0; // 相离
- if (dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; // 包含
- double a = angle(C2.c - C1.c);
- double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2 * C1.r*d));
- Point p1 = C1.point(a - da), p2 = C1.point(a + da);
- sol.push_back(p1);
- if (p1 == p2) return 1;
- sol.push_back(p2);
- return 2;
- }
- //求点到圆的切线
- int getTangents(Point p, Circle C, Vtor* v)
- {
- Vtor u = C.c - p;
- double dis = Length(u);
- if (dis < C.r) return 0;
- else if (dcmp(dis - C.r) == 0)
- {
- v[0] = Rotate(u, PI / 2.0);
- return 1;
- }
- else
- {
- double ang = asin(C.r / dis);
- v[0] = Rotate(u, -ang);
- v[1] = Rotate(u, +ang);
- return 2;
- }
- }
- //求两圆的切线
- int getCircleTangents(Circle A, Circle B, Point *a, Point *b)
- {
- int cnt = 0;
- if (A.r < B.r) { swap(A, B); swap(a, b); }
- //圆心距的平方
- double d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B.c.y)*(A.c.y - B.c.y);
- double rdiff = A.r - B.r;
- double rsum = A.r + B.r;
- double base = angle(B.c - A.c);
- //重合有无限多条
- if (d2 == 0 && dcmp(A.r - B.r) == 0) return -1;
- //内切
- if (dcmp(d2 - rdiff*rdiff) == 0)
- {
- a[cnt] = A.point(base);
- b[cnt] = B.point(base); cnt++;
- return 1;
- }
- //有外公切线
- double ang = acos((A.r - B.r) / sqrt(d2));
- a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
- a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
- //一条内切线
- if (dcmp(d2 - rsum*rsum) == 0)
- {
- a[cnt] = A.point(base); b[cnt] = B.point(PI + base); cnt++;
- }//两条内切线
- else if (dcmp(d2 - rsum*rsum) > 0)
- {
- double ang = acos((A.r + B.r) / sqrt(d2));
- a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
- a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
- }
- return cnt;
- }
- //**********************************
- Circle CircumscribedCircle(Point A, Point B, Point C)
- {
- Point tmp1 = Point((B.x + C.x) / 2.0, (B.y + C.y) / 2.0);
- Vtor u = C - tmp1;
- u = Rotate(u, PI / 2.0);
- Point tmp2 = Point((A.x + C.x) / 2.0, (A.y + C.y) / 2.0);
- Vtor v = C - tmp2;
- v = Rotate(v, -PI / 2.0);
- Point c = GetLineIntersection(tmp1, u, tmp2, v);
- double r = Length(C - c);
- return Circle(c, r);
- }
- //得到法向量就得到了这个方向上的向量了
- //Circle work1(Point p1, Point p2, Point p3)
- // {
- // Vtor nor1 = Normal(p1 - p2);
- // Vtor nor2 = Normal(p2 - p3);
- // Point mid1 = (p1 + p2) / 2.0;
- // Point mid2 = (p2 + p3) / 2.0;
- // Point O = GetLineIntersection(mid1, nor1, mid2, nor2);
- // double r = Length(O - p1);
- // return Circle(O, r);
- //}
- //不知道为什么我按常规的求法就是不对
- //Circle InscribedCircle(Point A,Point B,Point C)
- //{
- // Vtor u = A - B;
- // Vtor v = C - B;
- // double ang = Angle(u,v);
- // Vtor vv= Rotate(v,ang / 2.0);
- // u = A - C;
- // v = B - C;
- // ang = Angle(u,v);
- // Vtor uu = Rotate(u,ang / 2.0);
- // Point c = GetLineIntersection(B,vv,C,uu);
- // double r = DistanceToLine(c,A,C);
- // return Circle(c,r);
- //}
- Circle work2(Point p1, Point p2, Point p3) {
- Vtor v11 = p2 - p1;
- Vtor v12 = p3 - p1;
- Vtor v21 = p1 - p2;
- Vtor v22 = p3 - p2;
- double ang1 = (angle(v11) + angle(v12)) / 2.0;
- double ang2 = (angle(v21) + angle(v22)) / 2.0;
- Vtor vec1 = Vtor(cos(ang1), sin(ang1));
- Vtor vec2 = Vtor(cos(ang2), sin(ang2));
- Point O = GetLineIntersection(p1, vec1, p2, vec2);
- double r = DistanceToLine(O, p1, p2);
- return Circle(O, r);
- }
- vector<Point> solve4(Point A, Point B, double r, Point C)
- {
- Vtor normal = Normal(B - A);
- normal = normal / Length(normal) * r;
- vector<Point> ans;
- double t1 = 0, t2 = 0;
- Vtor tA = A + normal, tB = B + normal;
- getLineCircleIntersection(Line(tA, tB, tB - tA), Circle(C, r), t1, t2, ans);
- tA = A - normal, tB = B - normal;
- getLineCircleIntersection(Line(tA, tB, tB - tA), Circle(C, r), t1, t2, ans);
- return ans;
- }
- vector<Point> solve5(Point A, Point B, Point C, Point D, double r)
- {
- Line lines[5];
- Vtor normal = Normal(B - A) * r;
- Point ta, tb, tc, td;
- ta = A + normal, tb = B + normal;
- lines[0] = Line(ta, tb, tb - ta);
- ta = A - normal, tb = B - normal;
- lines[1] = Line(ta, tb, tb - ta);
- normal = Normal(D - C) * r;
- tc = C + normal, td = D + normal;
- lines[2] = Line(tc, td, td - tc);
- tc = C - normal, td = D - normal;
- lines[3] = Line(tc, td, td - tc);
- vector<Point> ans;
- ans.push_back(GetLineIntersection(lines[0].p, lines[0].v, lines[2].p, lines[2].v));
- ans.push_back(GetLineIntersection(lines[0].p, lines[0].v, lines[3].p, lines[3].v));
- ans.push_back(GetLineIntersection(lines[1].p, lines[1].v, lines[2].p, lines[2].v));
- ans.push_back(GetLineIntersection(lines[1].p, lines[1].v, lines[3].p, lines[3].v));
- return ans;
- }
- vector<Point> solve6(Circle C1, Circle C2, double r)
- {
- vector<Point> vc;
- getCircleIntersection(Circle(C1.c, C1.r + r), Circle(C2.c, C2.r + r), vc);
- return vc;
- }
- string op;
- double x[10];
- int main()
- {
- // Read();
- while (cin >> op)
- {
- if (op == "CircumscribedCircle")
- {
- for (int i = 0; i < 6; ++i) cin >> x[i];
- Circle ans = CircumscribedCircle(Point(x[0], x[1]), Point(x[2], x[3]), Point(x[4], x[5]));
- // Circle ans = work1(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]));
- printf("(%.6lf,%.6lf,%.6lf)\n", ans.c.x, ans.c.y, ans.r);
- }
- else if (op == "InscribedCircle")
- {
- for (int i = 0; i < 6; ++i) cin >> x[i];
- // Circle ans = InscribedCircle(Point(x[0],x[1]),Point(x[2],x[3]),Point(x[4],x[5]));
- Circle ans = work2(Point(x[0], x[1]), Point(x[2], x[3]), Point(x[4], x[5]));
- printf("(%.6lf,%.6lf,%.6lf)\n", ans.c.x, ans.c.y, ans.r);
- }
- else if (op == "TangentLineThroughPoint")
- {
- for (int i = 0; i < 5; ++i) cin >> x[i];
- Vtor vc[5];
- int len = getTangents(Point(x[3], x[4]), Circle(Point(x[0], x[1]), x[2]), vc);
- double tmp[5];
- for (int i = 0; i < len; ++i)
- {
- double ang = angle(vc[i]);
- if (ang < 0) ang += PI;
- ang = fmod(ang, PI);
- tmp[i] = ang * 180 / PI;
- }
- sort(tmp, tmp + len);
- printf("[");
- for (int i = 0; i < len; ++i)
- {
- printf("%.6lf", tmp[i]);
- if (i != len - 1) printf(",");
- }
- printf("]\n");
- }
- else if (op == "CircleThroughAPointAndTangentToALineWithRadius")
- {
- for (int i = 0; i < 7; ++i) cin >> x[i];
- vector<Point> vc = solve4(Point(x[2], x[3]), Point(x[4], x[5]), x[6], Point(x[0], x[1]));
- sort(vc.begin(), vc.end());
- printf("[");
- for (size_t i = 0; i < vc.size(); ++i)
- {
- printf("(%.6lf,%.6lf)", vc[i].x, vc[i].y);
- if (i != vc.size() - 1) printf(",");
- }
- printf("]\n");
- }
- else if (op == "CircleTangentToTwoLinesWithRadius")
- {
- for (int i = 0; i < 9; ++i) cin >> x[i];
- vector<Point> vc = solve5(Point(x[0], x[1]), Point(x[2], x[3]), Point(x[4], x[5]), Point(x[6], x[7]), x[8]);
- sort(vc.begin(), vc.end());
- printf("[");
- for (size_t i = 0; i < vc.size(); ++i)
- {
- printf("(%.6lf,%.6lf)", vc[i].x, vc[i].y);
- if (i != vc.size() - 1) printf(",");
- }
- printf("]\n");
- }
- else
- {
- for (int i = 0; i < 7; ++i) cin >> x[i];
- vector<Point> vc = solve6(Circle(Point(x[0], x[1]), x[2]), Circle(Point(x[3], x[4]), x[5]), x[6]);
- sort(vc.begin(), vc.end());
- printf("[");
- for (size_t i = 0; i < vc.size(); ++i)
- {
- printf("(%.6lf,%.6lf)", vc[i].x, vc[i].y);
- if (i != vc.size() - 1) printf(",");
- }
- printf("]\n");
- }
- }
- }
UVa12304的更多相关文章
- UVA-12304 2D Geometry 110 in 1! (有关圆的基本操作)
UVA-12304 2D Geometry 110 in 1! 该问题包含以下几个子问题 CircumscribedCircle x1 y1 x2 y2 x3 y3 : 三角形外接圆 Inscribe ...
- UVA12304 2D Geometry 110 in 1! 计算几何
计算几何: 堆几何模版就能够了. . .. Description Problem E 2D Geometry 110 in 1! This is a collection of 110 (in bi ...
- 【做题】UVA-12304——平面计算集合六合一
可真是道恶心题-- 首先翻译一下6个任务: 给出一个三角形,求它的外界圆. 给出一个三角形,求它的内接圆. 给出一个圆和一个点,求过这个点的切线的倾斜角\(\alpha \in [0,180)\).( ...
- UVA-12304 Race(递推)
题目大意:求n个人比赛的所有可能的名次种数.比如:n=2时,有A第一B第二.B第一A第二.AB并列第一三种名次. 题目解析:既然是比赛,总有第一名.第一名的人数可能是i (1≤i≤n),则剩下待定的人 ...
- UVa12304(计算几何中圆的基本操作)
断断续续写了250多行的模拟,其间被其他事情打扰,总共花了一天才AC吧~ 这道题目再次让我明白,有些事情看起来很难,实际上并没有我们想象中的那么难.当然了我主要指的不是这个题的难度…… 也是初学计算几 ...
- UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]
题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...
- How do you add?(递推)
题意:求将n分为k个数相加的种数. 如:n=20,k=2,则可分为: 0+20=20 1+19=20 2+18=20 ....... 20 +0=20 共21种方案. 解析:令f(n,m)表示将n分为 ...
- 【kuangbin】计算几何部分最新模板
二维几何部分 // `计算几何模板` ; const double inf = 1e20; const double pi = acos(-1.0); ; //`Compares a double t ...
随机推荐
- 转:嵌入式linux启动时运行的inittab文件
嵌入式系统下的linux启动配置文件,不同与普通的PC linux启动配置,启动相关文件与文件的内容也要少得多.嵌入式系统下的linux启动过程一般是: 1 在bootloader中制定各种要 ...
- Cannot find module formidable
今天按照例子学习安装 formidable 即使我-g全局安装,也不行.. 于是搜到了这句话.. 解决了 我也遇到这个问题,困扰了我一天,现在找到解决办法了.我在看这篇入门教程:http://node ...
- MFC浅析(4) CObject浅析
MFC CObject浅析 1.CObject简要声明 2.CRuntimeClass结构 3.RUNTIME_CLASS 4.DYNAMIC支持 5.DYNCREATE支持 6.SERIAL支持 C ...
- POJ1062 昂贵的聘礼(最短路)
题目链接. 分析: 一开始以为简单的DFS,直接做,MLE了. 本体应该用最短路径(Dijkstra算法)做. 此题的关键在于等级限制的处理,采用枚举,即假设酋长等级为5,等级限制为2,那么需要枚举等 ...
- -_-#微信内置JavaScript API WeixinJSBridge
微信相关的 js 操作:分享.网络.菜单 微信内置JsAPI之WeixinJSBridge微信WeixinJSBridge API续
- 【最长下降子序列】【动态规划】【二分】XMU 1041 Sequence
题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1041 题目大意: 一个二维平面,上面n(n<=1 000 000)个点.问至少选 ...
- vs2010旗舰版产品密钥
Microsoft Visual Studio 2010(VS2010)正式版 CDKEY / SN: YCFHQ-9DWCY-DKV88-T2TMH-G7BHP 企业版.旗舰版都适用
- javascript 四舍五入
原生 javascript 中四舍五入的函数 toFixed(n) , n为要保留的小数位数. (0<= n <=20) var num=1.0999; console.log(num.t ...
- 五子棋——C++
最近在学C++,这个是照葫芦画瓢的五子棋C++版- - 依赖SDL_PingGe_1.3,很多实用的函数,类我都封装成DLL了调用起来真是舒服啊.. 不过一方面要对DLL做测试,一方面要开发,一个人还 ...
- 《鸟哥Linux私房菜基础学习篇》命令索引
在学习的过程,由于很多命令平时都用不着,因此做这个索引方便需要时查找.这包括了前两部分.主要是按页码顺序. P118 date:显示日期与时间 cal:显示日历 bc:计算器 P121 [Tab]:命 ...