一.问题描述

凸集(Convex Set): 任意两点的连线都在这个集合内的集合就是一个凸集.
            ⒈对于一个集合D,D中任意有限个点的线性组合的全体称为D的凸包。
            ⒉对于一个集合D,所有包含D的凸集之交称为D的凸包(由此定义可以想到分治算法)。
        可以证明,上述两种定义是等价的。点集Q的凸包(convex hull)是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内。下图中由红色线段表示的多边形就是点集Q={p0,p1,...p12}的凸包。一组平面上的点,求一个包含所有点的最小的凸多边形,这就是凸包问题了,这可以形象地想象成在地上放置一些不可移动的木桩,用一根绳子把他们尽量紧地圈起来,并且为凸边形,这就是凸包了。

二.GiftWrapping算法

又叫卷包裹算法,复杂度O(n*h),n表示共几个点,h表示极点个数。

  • 理论准备

向量叉积:也被称为矢量积、叉积(即交叉乘积)、外积,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个伪向量而不是一个标量,并且两个向量的叉积与这两个向量垂直,方向由右手法则确定。两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。
a×b=(aybz-azby)i+(azbx-axbz)j+(axby-aybx)k,为了帮助记忆,利用三阶行列式,写成
|  i    j   k|
|ax ay az|
|bx by bz|。
        b×a= -a×b,三角形ABC的面积=1/2*abs(AB×AC)(这个公式可以解决一些精度问题),不满足结合律,但满足雅可比恒等式:a× (b×c) +b× (c×a) +c× (a×b) =0和拉格朗日公式a× (b×c) =b(a·c) -c(a·b),可以简单地记成“BAC - CAB”。这个公式在物理上简化向量运算非常有效,需要注意的是,这个公式对微分算子不成立。

  • 算法描述

卷包裹算法从一个必然在凸包上的点开始向着一个方向依次选择最外侧的点,当回到最初的点时,所选出的点集就是所要求的凸包。这里还有两个问题不是很清楚:
        1.怎么确定一个肯定在凸包上的点?
        这个问题很好解决,取一个最左边的也就是横坐标最小的点(或最下边的点,纵坐标最小的),如果有多个这样的点, 就取这些点里纵坐标(横坐标)最小的,这样可以很好的处理共线的情况。
        2.如何确定下一个点(即最外侧的点)?

向量的叉积是不满足交换律的,向量A乘以向量B, 如果为正则为A逆时针旋转向B,否则为顺时针,当然这里A转向B的角总是考虑一个小于180度以内的角。

三.算法的Java实现

看完这段代码,直接把POJ1113AC了吧。

import java.util.*;

class Point implements Comparable {
double x;
double y; public int compareTo(Object o) {// 按x升序排列,x相同按y升序
Point b = (Point) o; if (this.x > b.x)
return 1;
else if (this.x == b.x) {
if (this.y > b.y)
return 1;
else if (this.y == b.y)
return 0;
else
return -1;
} else
return -1;
}
} public class GiftWrap { Point[] point;// 已知的平面上的点集
boolean[] vis;// 标pointA[i]是否已在凸包中
Queue<Integer> queue = new LinkedList<Integer>();// 点集的凸包, int n;
int l; public GiftWrap() { } // 向量ca与ba的叉积
double cross(Point c, Point a, Point b) {
return (c.x - a.x) * (a.y - b.y) - (c.y - a.y) * (a.x - b.x);
} // 求距离,主要是为了求极点
public double distance(Point p1, Point p2) {
return (Math.hypot((p1.x - p2.x), (p1.y - p2.y)));
} public void go() { Scanner sc = new Scanner(System.in);
n = sc.nextInt();
point = new Point[n + 1];
vis = new boolean[n + 1];
for (int i = 1; i <= n; i++) {// 输入从1开始
point[i] = new Point();
point[i].x = sc.nextDouble();
point[i].y = sc.nextDouble();
}
Arrays.sort(point, 1, point.length - 1);// 注意这个排序从1开始
// 确定一个肯定在凸包上的点
vis[1] = true;// 注意这里将point[1]标记为放进凸包,不过并没有真的放入队列
int in = 1;//在凸包上的点 while (true) {
int not = -1;
for (int i = 1; i <= n; i++) {
if (!vis[i]) {// 找一个不在凸包上的点
not = i;
break;
}
}
if (not == -1)
break;// 找不到,结束
for (int i = 1; i <= n; i++) {
/*
* 遍历所有点, 每个点都和现有最外侧的点比较,得到新的最外侧的点
* 第二个条件是找到极点,不包括共线点
*/
if ((cross(point[in], point[i], point[not]) > 0)
|| (cross(point[in], point[i], point[not]) == 0)
&& (distance(point[in], point[i]) > distance(
point[in], point[not])))
not = i;
}
if (vis[not])
break;// 找不到最外侧的点了
queue.offer(not);// 最外侧的点进凸包
vis[not] = true;// 标记这点已放进凸包了
in = not;//in始终表示一个必定在凸包里的点
}
double ans = 0;
in = 1;
/*
最后将point[1]的下标放进凸包
不会重复放入,因为最开始只是把标记下标1在凸包
*/
queue.offer(1);
/*
* 这里有个问题需要弄明白
* 算凸多边形周长,需要连续的两个点,下面的是连续的不?
* 是的。
* 编号1插入到队尾,temp先取出的是队头,即是最后一个进入凸多边形的点,显然和编号1是连接的
* 那会不会重复呢?
* 当然不会,因为while循环最后一次是编号1和最先插入的点的距离,此时编号1已经没了,队列空了
*/
while (!queue.isEmpty())
{
int temp = queue.poll();//获取并移除队列的头
ans += Math.hypot((point[in].x - point[temp].x), (point[in].y - point[temp].y));
in = temp;
}
System.out.println(ans);
} public static void main(String args[]) {
GiftWrap m = new GiftWrap();
m.go();
}
}

遗留问题:做完POJ1113时,想起了怎么求所得凸多边形的外接圆,也就是最小覆盖圆问题,那么又怎么求内切圆呢?

GiftWrapping算法解决二维凸包问题的更多相关文章

  1. Andrew算法求二维凸包-学习笔记

    凸包的概念 首先,引入凸包的概念: (有点窄的时候...图片右边可能会被吞,拉开图片看就可以了) 大概长这个样子: 那么,给定一些散点,如何快速地求出凸包呢(用在凸包上的点来表示凸包) Andrew算 ...

  2. 计算几何 二维凸包问题 Andrew算法

    凸包:把给定点包围在内部的.面积最小的凸多边形. Andrew算法是Graham算法的变种,速度更快稳定性也更好. 首先把全部点排序.依照第一keywordx第二keywordy从小到大排序,删除反复 ...

  3. Luogu P2742 模板-二维凸包

    Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...

  4. UVA 10652 Board Wrapping(二维凸包)

    传送门 刘汝佳<算法竞赛入门经典>P272例题6包装木板 题意:有n块矩形木板,你的任务是用一个面积尽量小的凸多边形把它们抱起来,并计算出木板占整个包装面积的百分比. 输入:t组数据,每组 ...

  5. 【计算几何】二维凸包——Graham's Scan法

    凸包 点集Q的凸包(convex hull)是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内.右图中由红色线段表示的多边形就是点集Q={p0,p1,...p12}的凸包. 一组平面上的点, ...

  6. 使用Graham扫描法求二维凸包的一个程序

    #include <iostream> #include <cstring> #include <cstdlib> #include <cmath> # ...

  7. luogu P2742 【模板】二维凸包 / [USACO5.1]圈奶牛Fencing the Cows

    题解: 二维凸包裸题 按照x坐标为第一关键字,y坐标为第二关键字排序 然后相邻判断叉积用单调队列搞过去 正反都做一次就好了 代码: #include <bits/stdc++.h> usi ...

  8. 【洛谷 P2742】【模板】二维凸包

    题目链接 二维凸包板子..有时间会补总结的. #include <cstdio> #include <cmath> #include <algorithm> usi ...

  9. k近邻算法C++二维情况下的实现

    k近邻算法C++二维实现 这是一个k近邻算法的二维实现(即K=2的情况). #include <cstdio> #include <cstring> #include < ...

随机推荐

  1. C语言中的指针学习(小黑板)

    指针是C语言中的精华所在,也是C语言的危险之在,今天又重现温习了一下C语言,做了一下总结. 欢迎批阅. (1)指针的含义指针的本质也是数据类型,它是指向地址的变量.例如: { int a = 10; ...

  2. MVC-Model数据注解(三)-Remote验证的一个注意事项

    首先,一般来说对于一个属性的验证可能需要不止一个的远程验证,比如对于用户名来说,我们需要对于它的长度做一些限制,这个可以通过StringLength特性来解决:同时还需要验证用户名不能重复,这个就需要 ...

  3. 解决npm安装模块时 npm err! registry error parsing json

    最近还真是点背,从yeoman生成一个react项目或是github上克隆一个项目,在npm install的时候, 一直报npm err! registry error parsing json(就 ...

  4. Bootstrap 与 ASP.NET MVC 4 不使用 NuGet Package 笔记

    转自 http://www.mytecbits.com/microsoft/dot-net/bootstrap-with-asp-net-mvc-4-step-by-step 单位最近做了一个Boot ...

  5. android 自定义按钮的外边框

    <?xml version="1.0" encoding="utf-8"?> <shape xmlns:android="http: ...

  6. [线段树]HDOJ5091 Beam Cannon

    题意:给n, w, h  (1 <= N <= 10000,1 <= W <= 40000,1 <= H <= 40000) $w\times h$是可以射到的范围 ...

  7. ubuntu使用中的一些问题

    ubuntu如何修改计算机名? sudo gedit /etc/hostname 如何查看ubuntu操作系统位数 方法1: #查看long的位数,返回32或64 getconf LONG_BIT 方 ...

  8. ANDROID_MARS学习笔记_S01原始版_009_SQLite

    一.代码1.xml(1)activity_main.xml <?xml version="1.0" encoding="utf-8"?> <L ...

  9. java.utils.HashMap数据结构分析(转)

      上图为Hashmap的数据结构图,具体实线是采用数组结合链表实现,链表是为了解决在hash过程中因hash值一样导致的碰撞问题. 所以在使用自定义对象做key的时候,一定要去实现hashcode方 ...

  10. Outlook接收qq的邮件

    1.先去qq邮箱,设置,账户 开启pop3服务,假如之前开启过,最好关闭之后重新开启 最新版本的必须使用邮箱的独立密码才可以收取邮件 (否则就算你之前开通了,也无法用你的qq账号和密码收取邮件的) 2 ...