一直不知道差分约束是什么类型题目,最近在写最短路问题就顺带看了下,原来就是给出一些形如x-y<=b不等式的约束,问你是否满足有解的问题

好神奇的是这类问题竟然可以转换成图论里的最短路径问题,下面开始详细介绍下

比如给出三个不等式,b-a<=k1,c-b<=k2,c-a<=k3,求出c-a的最大值,我们可以把a,b,c转换成三个点,k1,k2,k3是边上的权,如图

由题我们可以得知,这个有向图中,由题b-a<=k1,c-b<=k2,得出c-a<=k1+k2,因此比较k1+k2和k3的大小,求出最小的就是c-a的最大值了

根据以上的解法,我们可能会猜到求解过程实际就是求从a到c的最短路径,没错的....简单的说就是从a到c沿着某条路径后把所有权值和k求出就是c -a<=k的一个

推广的不等式约束,既然这样,满足题目的肯定是最小的k,也就是从a到c最短距离...

理解了这里之后,想做题还是比较有困难的,因为题目需要变形一下,不能单纯的算..

首先以poj3159为例,这个比较简单,就是给出两个点的最大差,然后让你求1到n的最大差,直接建图后用bellman或者spfa就可以过了

稍微难点的就是poj1364,因为他给出的不等式不是x-y<=k形式,有时候是大于号,这样需要我们去变形一下,并且给出的还是>,<没有等于,都要变形

再有就是poj1201,他要求出的是最长距离,那就要把形式变换成x-y>=k的标准形式

注意点:

1. 如果要求最大值想办法把每个不等式变为标准x-y<=k的形式,然后建立一条从y到x权值为k的边,变得时候注意x-y<k =>x-y<=k-1

如果要求最小值的话,变为x-y>=k的标准形式,然后建立一条从y到x的k边,求出最长路径即可

2.如果权值为正,用dj,spfa,bellman都可以,如果为负不能用dj,并且需要判断是否有负环,有的话就不存在

转自 void- man 差分约束系统详解的更多相关文章

  1. [poj 3159]Candies[差分约束详解][朴素的考虑法]

    题意 编号为 1..N 的人, 每人有一个数; 需要满足 dj - di <= c 求1号的数与N号的数的最大差值.(略坑: 1 一定要比 N 大的...difference...不是" ...

  2. 差分约束详解&&洛谷SCOI2011糖果题解

    差分约束系统: 如果一个系统由n个变量和m个约束条件组成,形成m个形如ai-aj≤k的不等式(i,j∈[1,n],k为常数),则称其为差分约束系统(system of difference const ...

  3. [poj 1364]King[差分约束详解(续篇)][超级源点][SPFA][Bellman-Ford]

    题意 有n个数的序列, 下标为[1.. N ], 限制条件为: 下标从 si 到 si+ni 的项求和 < 或 > ki. 一共有m个限制条件. 问是否存在满足条件的序列. 思路 转化为差 ...

  4. 最短路算法详解(Dijkstra/SPFA/Floyd)

    新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...

  5. 原生JS:delete、in、typeof、instanceof、void详解

    delete.in.typeof.instanceof.void详解 本文参考MDN做的详细整理,方便大家参考[MDN](https://developer.mozilla.org/zh-CN/doc ...

  6. void与void*详解

    void关键字的使用规则: 1. 如果函数没有返回值,那么应声明为void类型: 2. 如果函数无参数,那么应声明其参数为void: 3. 如果函数的参数可以是任意类型指针,那么应声明其参数为void ...

  7. 【转】void 详解

    void关键字的使用规则: 1. 如果函数没有返回值,那么应声明为void类型: 2. 如果函数无参数,那么应声明其参数为void: 3. 如果函数的参数可以是任意类型指针,那么应声明其参数为void ...

  8. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  9. UVA 11374 Halum (差分约束系统,最短路)

    题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...

随机推荐

  1. Menu bar missing from ClearCase Explorer

    See following links: Menu bar missing from ClearCase Explorer Understanding the Rational ClearCase E ...

  2. 省选训练赛第4场D题(多米诺骨牌)

    题目来自FZU2163 多米诺骨牌 Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description Vasya很喜欢排多米诺 ...

  3. MongoDB的timezone问题

    MongoDB是以UTC格式来存储所有时间的,查询的时候也是返回UTC时间,不提供在数据库连接级别的timezone支持,这就带来一个问题:无法使用groupby对日期进行聚合,因为你所在的timez ...

  4. 掌握 ActionResult

    我在上一篇博客不要停留在表面,MVC 3 我们要深入一些 说明了我们的掌握程度还是不够,还需要我们继续努力.但是有园友质疑说他们认为我说的只是书院派,并不实用,这令作为程序员的我很是生气.好吧,那咱们 ...

  5. MVC5之路由机制

    ---恢复内容开始--- MVC是一种模式,是基于asp.net上的一种设计.路由机制不属于MVC,路由机制属于asp.net.因此,mvc的路由机制就是基于asp.net路由机制上的一种“自定制”. ...

  6. 恢复Delphi XE2的Library Path

    Delphi XE2好好的,手贱乱删,结果新建一个工程都不能编译了,出现:DELPHI X2 [DCC Fatal Error] KjcxClient.dpr(1): F1027 Unit not f ...

  7. Redhat 6 配置CentOS yum source

    由于最近曝出linux的bash漏洞,想更新下bash,于是 想到了配置CentOS yum source. 测试bash漏洞的命令: env x='() { :;}; echo "Your ...

  8. jcom2在win7 X86上操作Excel

    浅谈Java中利用JCOM实现仿Excel编程   在JAVA中使用JCOM和JXL注意要点: (1)在你的lib下要有jdom-1.0.jar,jxl-2.5.5.jar,jcom-2.2.4.ja ...

  9. Kinetic使用注意点--blob

    new Blob(config) 参数: config:包含所有配置项的对象. { points: "存放路径点的数组,可以用一层数组[a,b,c,d].二层数组[[a,b],[c,d]]或 ...

  10. 关于2440的裸跑程序中SD卡读后不能成功写入问题的讨论

    问题描述: TQ2440的官方裸跑程序中,对SD卡先进行读操作,然后再写,发现不能程序卡死.倘若对SD卡先写后读,程序可以正常运行,奇哉怪哉? 写数据的关键代码--> while(i < ...