cs231n spring 2017 lecture4 Introduction to Neural Networks 听课笔记
1. Backpropagation:沿着computational graph利用链式法则求导。每个神经元有两个输入x、y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/∂x = ∂L/∂z * ∂z/∂x,∂L/∂y = ∂L/∂z * ∂z/∂y。靠这种方式可以计算出最终的loss function相对于最开始的输入的导数。
这种方法的好处是,每个神经元都是很简单的运算(比如加、减、乘、除、指数、sigmoid等),它们导数的解析式是很容易求解的,用链式法则连乘起来就得到了我们需要的导数。如果直接求的话会很复杂很难求。
2. Add(x, y)是gradient distributor,把后面神经元的导数反向传递给x和y。
Max(x, y)是gradient router,它只会反向传递给x、y中大的那一个。可以这么直观的理解,由于只有x、y中大的那个数被传递到后面的神经元对最后结果产生影响,所以在反向传递的时候,也只会评估x、y中大的那个数。
Mul(x, y)是gradient switcher,它把后面神经元的导数分别传递给x和y,传给x的部分乘以y,传给y的部分乘以x。
想想求导公式就明白了。
3. 对于一个输入x,两个输出y、z的神经元,反向传递求导的时候,是把从y和z两路反向传递过来的导数求和。
4. 如果x、y、z等元素都不是标量,而是向量,则求导全部都变成了雅克比矩阵。对于一个4096维输入,4096维输出的系统,雅克比大小为4096*4096,如果minibatch里100个采样,则雅克比变成了409600*409600大小,运算很麻烦。但如果知道输出的某个元素只和输入的某些元素相关,则求偏导的时候只有相关项有值,其他都是0,这个性质可以被用来加速计算。极端的情况,如果输入和输出一一对应,则雅克比是对角矩阵。
5. 深度学习框架(比如Caffe等)的API里,会定义不同的layer,每种layer就是搭神经网络的积木(也就是上文说的神经元节点),每种layer会有自己的forward()/backward()函数,分别用来正向的从输入求出输出,和反向的求loss funciton对这个节点输入的导数。
6. 神经网络,从函数的角度说就是复合函数,把简单函数一层层堆叠起来。例如线性函数f=Wx,则两层的神经网络可能是f=W2max(0,W1x),三层的网络可能是f=W3max(0, W2max(0,W1x))。直观地说,比如在物体分类的问题中,第一层网络训练出的权重可能是一个红色的车的template,而第二层网络的权重可能是不同的颜色,这样两层网络就实现了泛化预测各种颜色的车的目的。
7. 从生物学的角度看,sigmoid函数是非常有道理的,它意味着输入进来的信号不够强的时候输出为0,神经元没有被激活,足够强之后,神经元被激活从而产生输出。ReLU:f(x) = max(0, x)也是同样的想法。这些都是“激活函数”。所以深度学习中实际构造的神经元,通常是一个线性单元复合一个激活函数sigmoid(Wx+b)。
8. 虽然深度学习从脑科学得到了很多启发,但是我们要谨慎的把两者做直接类比,因为生物神经元要复杂的多。
cs231n spring 2017 lecture4 Introduction to Neural Networks 听课笔记的更多相关文章
- cs231n spring 2017 lecture4 Introduction to Neural Networks
1. Backpropagation:沿着computational graph利用链式法则求导.每个神经元有两个输入x.y,一个输出z,好多层这种神经元连接起来,这时候已知∂L/∂z,可以求出∂L/ ...
- cs231n spring 2017 lecture3 Loss Functions and Optimization 听课笔记
1. Loss function是用来量化评估当前预测的好坏,loss function越小表明预测越好. 几种典型的loss function: 1)Multiclass SVM loss:一般的S ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition 听课笔记
1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...
- cs231n spring 2017 lecture1 Introduction to Convolutional Neural Networks for Visual Recognition
1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿 ...
- cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记
1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...
- cs231n spring 2017 lecture10 Recurrent Neural Networks
(没太听明白,下次重新听一遍) 1. Recurrent Neural Networks
- cs231n spring 2017 lecture12 Visualizing and Understanding 听课笔记
这一节课很零碎. 1. 神经网络到底在干嘛? 浅层的是具体的特征(比如边.角.色块等),高层的更抽象,最后的全连接层是把图片编码成一维向量然后和每一类标签作比较.如果直接把图片和标签做像素级的最近领域 ...
- cs231n spring 2017 lecture9 CNN Architectures 听课笔记
参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...
随机推荐
- 开始连载啦~每周2更共11堂iKcamp课|基于Koa2搭建Node.js实战项目教学(含视频)| 课程大纲介绍
- 【批处理】IF ERRORLEVER语句顺序注意
@echo off dir d:\dddddd if errorlevel 1 goto 1 if errorlevel 0 goto 0 rem 两行if语句不可交换位置,否则失败了也会显示成功. ...
- Parallels Desktop 12 for Mac 破解版
Parallels Desktop for Mac 是功能最强大灵活度最高的虚拟化方案,无需重启即可在同一台电脑上随时访问Windows和Mac两个系统上的众多应用程序.从仅限于PC的游戏到生产力软件 ...
- 网友"就像一支烟"山寨币分析估值方法
[注:素材取自QQ群,2017年12月28日的聊天记录."就像一支烟"分享了自己的山寨币分析估值方法.因为删去了其他人的聊天记录,部分文字可能断章取义,仅供参考,具体情况请自行分析 ...
- ABP .Net Core API和Angular前端APP集成部署
前言:在ABP官网(https://aspnetboilerplate.com)生成的.Net Core + Angular项目前后端是两个独立的项目,我们可以分开部署,也可以将前端和Web API一 ...
- mysql创建新用户及新用户不能本地登陆的问题
最近在搭建hadoop集群,主节点上面安装的MySQL数据库,对着方面不熟悉,为hive.Ooize等服务统一使用的root账号和密码,为了安全一些库对于某些用户是不可见的,所以需要针对不同的服务设置 ...
- bzoj 1801: [Ahoi2009]chess 中国象棋
Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. Input 一行包含两个整数N, ...
- Cat 客户端如何构建调用链消息树
场景 & 代码 Inner0 中的某方法调用了 Inner1,代码 Inner1的代码很简单, Cat通过一个线程本地变量来保存调用链的相关信息,其中核心的数据结构是消息树和操作栈.消息树用来 ...
- DCL的失效:现实与初衷的背离
最近看了Brian Goetz写的一篇有关DCL的文章:Double-checked locking: Clever, but broken.( 2001年发表于JavaWorld上) 这篇文章讲述了 ...
- Spring基础篇——Spring容器和应用上下文理解
上文说到,有了Spring之后,通过依赖注入的方式,我们的业务代码不用自己管理关联对象的生命周期.业务代码只需要按照业务本身的流程,走啊走啊,走到哪里,需要另外的对象来协助了,就给Spring说,我想 ...