旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法——圆周系统之旋转模式。那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的直角坐标(x,y),求其极坐标(α,γ),实际上是求arctan(y/x)。

旋转模式下,每次迭代使z趋近于α(α-z趋近于0),而向量模式下,则使y趋近于0,这一点很好理解,即从坐标位置,旋转到x正半轴,一共旋转了多少角度,则该角度即为α,从而知道了极角。

如图所示,在单位圆上,向量OP与X轴的正半轴夹角为α,故P点的坐标可表示为

根据开头描述,我们需要转动向量OP,先顺时针旋转θ角至向量OQ,Q点的坐标可表示为

这里定义θ为目标旋转角度。根据三角函数公式可将上式展开为

现在已经有点 Cordic 算法的样子了,但是我们看到每次旋转都要计算 4 次浮点数的乘法运算,运算量还是太大了。还需要进一步的改进,改进的切入点当然还是坐标变换的过程。

将式(1.1)代入到式(1.3)中可得

用矩阵形式表示为:

旋转了i次以后,可以得到:

最终需将y_Q_i+1转为0,先按45°的二分法查找来解释过程,用C语言描述过程为:

#include <stdio.h>
#include <stdlib.h> double cordic_v(double x, double y); int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n 极角为 = %f \n",alfa);
return 0;
}
double cordic_v(double x, double y)
{
const double sine[] = {0.7071067811865,0.3826834323651,0.1950903220161,
0.09801714032956,0.04906767432742,0.02454122852291,0.01227153828572,
0.006135884649154,0.003067956762966,0.001533980186285,
7.669903187427045e-4,3.834951875713956e-4,1.917475973107033e-4,
9.587379909597735e-5,4.793689960306688e-5,2.396844980841822e-5
}; const double cosine[] = {0.7071067811865,0.9238795325113,0.9807852804032,0.9951847266722,
0.9987954562052,0.9996988186962,0.9999247018391,0.9999811752826,0.9999952938096,
0.9999988234517,0.9999997058629,0.9999999264657,0.9999999816164,0.9999999954041,
0.999999998851,0.9999999997128
};
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
double angle = 45.0; //第一次旋转角度为45°
for( i=0; i<15;i++)
{
if(y > 0)
{
x_new = x * cosine[i] + y * sine[i];
y_new = y * cosine[i] - x * sine[i];
x = x_new;
y = y_new;
angleSum += angle;
} else
{
x_new = x * cosine[i] - y * sine[i];
y_new = y * cosine[i] + x * sine[i];
x = x_new;
y = y_new;
angleSum -= angle;
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f\n", i+1, angle,angleSum );
angle /= 2;
}
return angleSum;
}

经过旋转模式的推导,向量模式的伪旋转公式,可表示为

C语言描述过程,如下:

#include <stdio.h>
#include <stdlib.h>
#include <math.h> double cordic_v(double x, double y);
double r = 0.0; //定义一个模长全局变量 int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n极角 = %5f, 模长 = %5f\n",alfa,r);
return 0;
}
double cordic_v(double x, double y)
{
const double theta[] = { 45.0, 26.56505118, 14.03624347, 7.125016349,
3.576334375, 1.789910608, 0.8951737102, 0.4476141709,
0.2238105004, 0.1119056771, 0.05595289189, 0.02797645262,
0.01398822714, 0.006994113675, 0.003497056851, 0.001748528427
}; //旋转角度
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
r = sqrt(x*x+y*y);
for( i=0; i<16;i++)
{
if(y > 0)
{
x_new = x + y/(1<<i);
y_new = y - x/(1<<i);
x = x_new;
y = y_new;
angleSum += theta[i];
} else
{
x_new = x - y/(1<<i);
y_new = y + x/(1<<i);
x = x_new;
y = y_new;
angleSum -= theta[i];
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f, y = %5f\n", i+1,theta[i],angleSum,y );
}
return angleSum;
}

同样,向量模式的cordic算法适用于第一、四象限的坐标变换,在第二、三象限的坐标需要进行预处理。

参考

Cordic算法——圆周系统之向量模式的更多相关文章

  1. FPGA算法学习(1) -- Cordic(圆周系统之向量模式)

    旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法--圆周系统之旋转模式.那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的 ...

  2. Cordic算法——圆周系统之旋转模式

    三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...

  3. FPGA算法学习(1) -- Cordic(圆周系统之旋转模式)

    三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...

  4. Cordic算法——verilog实现

    上两篇博文Cordic算法--圆周系统之旋转模式.Cordic算法--圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台.只 ...

  5. 使用CORDIC算法求解角度正余弦及Verilog实现

    本文是用于记录在了解和学习CORDIC算法期间的收获,以供日后自己及他人参考:并且附上了使用Verilog实现CORDIC算法求解角度的正弦和余弦的代码.简单的testbench测试代码.以及在Mod ...

  6. cordic算法的verilog实现及modelsim仿真

    1. 算法介绍 CORDIC(Coordinate Rotation Digital Computer)算法即坐标旋转数字计算方法,是J.D.Volder1于1959年首次提出,主要用于三角函数.双曲 ...

  7. CORDIC算法(1):圆周旋转模式下计算三角函数和模值

    CORDIC(Coordinate Rotation Digital Computer)坐标旋转数字计算机,是数学与计算机技术交叉产生的一种机器算法,用于解决计算机的数学计算问题.发展到现在,CORD ...

  8. 基于FPGA的cordic算法的verilog初步实现

    最近在看cordic算法,由于还不会使用matlab,真是痛苦,一系列的笔算才大概明白了这个算法是怎么回事.于是尝试用verilog来实现.用verilog实现之前先参考软件的程序,于是先看了此博文h ...

  9. 基于FPGA的Cordic算法实现

    CORDIC(Coordinate Rotation Digital Computer)算法即坐标旋转数字计算方法,是J.D.Volder1于1959年首次提出,主要用于三角函数.双曲线.指数.对数的 ...

随机推荐

  1. java反射获取字段的属性值,以及为字段赋值等方法

    1.获取某个类的属性值 /*利用getter方法获取值(首字母大写) CjJssetDTO obj: */ String filedName = "Cj"+(i+1); Class ...

  2. 如何结合场景利用block进行回调

    我们在开发中常常会用到函数回调,你可以用通知来替代回调,但是大多数时候回调是比通知方便的,所以何乐而不为呢?如果你不知道回调使用的场景,我们来假设一下: 1.我现在玩手机 2.突然手机没有电了 3.我 ...

  3. 创建UWP通用应用程序

    一,下载VS2015,下载地址:https://www.visualstudio.com/zh-hans/downloads/ VS2015下载地址 二,选择UWP开发工具并安装 VS2015配置 三 ...

  4. 见到过的MOS管的一些参数

    选择MOS管的时候需要注意的几个参数1,VDSS(击穿电压):此电压要选择合适,一般是加入的电压值的峰值的两倍.2,VGS(th)(开启电压):3,RDS(on)(漏源电阻):这个值要尽可能的小,因为 ...

  5. Volley图片加载并加入缓存处理(转自http://blog.csdn.net/viewhandkownhealth/article/details/50957024)

    直接上代码  两种方式 ImageView 和NetworkImageView 如有问题或者好的建议.意见 欢迎大家加入技术群(群号: 387648673 ) 先自定义全局Application 获取 ...

  6. UISearchBar的扩展使用

    1. 设置背景颜色 let searchBar = UISearchBar.init() searchBar.barTintColor = UIColor.white 2. 去除上下黑线 let bg ...

  7. OOAD-设计模式(三)之创建型设计模式(5种)

    前言 前面介绍了OOAD的基础知识,现在我们来详细的说明一下GOF设计模式中的23种模式,希望大家能够学到东西! 一.工厂方法模式(Factory Method) 1.1.工厂方法模式概述 工厂方法模 ...

  8. tp5上传图片添加永久素材到微信公众号

    $file = request()->file('image');if(!$file){ $res['status'] = false; $res['msg'] = '必须上传文件'; retu ...

  9. 谈一谈原生JS中的【面向对象思想】

           [重点提前说:面向对象的思想很重要!]         最近开始接触学习后台的PHP语言,在接触到PHP中的面向对象相关思想之后,突然想到之前曾接触的JS中的面向对象思想,无奈记性太差, ...

  10. 找到python官方标准库文档

    python中有很多标准库.我们没法记住全部标准库,但是可以在:https://docs.python.org/3/py-modindex.html 中查看标准库的索引 在python的官方文档中,如 ...