题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1069

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10875    Accepted Submission(s): 5660

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
题意:

题目:给出一些长方体,然后让你把他堆成塔,
要求下面的塔的要比上面的塔大(长和宽),
而且每一种长方体的数量都是无限的。
每个格子最多3个状态,也就是高最多有3种,也就是一共有N*3 最多90个格子,但是X和Y可以对调,那么就最多180个,我对180个格子对X从小到大排序,X相等,Y就重小到大排序,那么这个问题就可以转换成类似求最大递增子序列问题一样思路的DP,DP[i]表示第i个格子时的最大值,dp[i+1]就是从前i个中找符合条件的最大的一个加上去,因为,重楼必须X越来越小,反过来就是X越来越大,我已经保证了X是递增的,所以这样DP是对的!
 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ; struct Node {
int x;
int y;
int z;
bool operator < (const Node &a) const
{
if(x!=a.x) return x < a.x;
else if(y!=a.y) return y < a.y;
else return z > a.z;
}
} node[N];
int dp[N]; int main()
{
int n;
int cnt = ;
while(~scanf("%d",&n))
{
if(n==) return ;
memset(dp,,sizeof(dp));
int x,y,z;
int t = ;
for(int i = ; i < n; i++){
scanf("%d%d%d",&x,&y,&z);
node[t].x = x;
node[t].y = y;
node[t].z = z;
t++;
node[t].x = x;
node[t].y = z;
node[t].z = y;
t++;
node[t].x = y;
node[t].y = x;
node[t].z = z;
t++;
node[t].x = y;
node[t].y = z;
node[t].z = x;
t++;
node[t].x = z;
node[t].y = x;
node[t].z = y;
t++;
node[t].x = z;
node[t].y = y;
node[t].z = x;
t++;
}
sort(node,node+*n);
int mmax = ;
for(int i = ; i < *n; i++)
dp[i] = node[i].z;
for(int i = ; i < *n; i++)
{
for(int j = ; j < i; j++)
{
if((node[i].x>node[j].x)&&(node[i].y>node[j].y))
dp[i] = max(dp[i],dp[j]+node[i].z);
}
mmax = max(mmax,dp[i]);
}
printf("Case %d: maximum height = ",cnt);
cnt++;
printf("%d\n",mmax);
}
return ;
}

最长上升子序列(LIS经典变型) dp学习~5的更多相关文章

  1. AT2827 最长上升子序列LIS(nlogn的DP优化)

      题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=10 ...

  2. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

  3. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  4. 最长上升子序列 LIS(Longest Increasing Subsequence)

    引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…< ...

  5. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  6. 最长上升子序列LIS(51nod1134)

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...

  7. 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】

    二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...

  8. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  9. 题解 最长上升子序列 LIS

    最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...

  10. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

随机推荐

  1. Android LayoutInflator 解析

    一.实际使用场景引入: 在ListView的Adapter的getView方法中基本都会出现,使用inflate方法去加载一个布局,用于ListView的每个Item的布局.  同样,在使用ViewP ...

  2. php-递归创建级联目录

    方法一: function mk_dir($path_arr,$root){ if(!empty($path_arr)){ static $path;//每次保存上次调用的值 $path .= '/' ...

  3. Automata

    A deterministic finite automaton is represented formally by a 5-tuple (Q,Σ,δ,q0,F), where: Q is a fi ...

  4. unity创建和加载AssetBundle

    先说一下为什么要使用AssetBundle吧,以前做东西一直忽略这个问题,现在认为这个步骤很重要,代码是次要的,决策和为什么这样搞才是关键. 一句话概括吧,AssetBundle实现了资源与服务分离, ...

  5. 佛祖保佑永无bug的源代码

    ${AnsiColor.BRIGHT_YELLOW} ${AnsiColor.BRIGHT_RED}_ooOoo_${AnsiColor.BRIGHT_YELLOW} ${AnsiColor.BRIG ...

  6. nginx+apache前后台搭配使用

    nginx apache都是web服务器 但是nginx更轻型对静态处理强大,而且nginx也是反向代理服务器,可以作转发 apache比较重型,非常稳定,处理动态WEB程序非常好,但是对静态处理就比 ...

  7. CSS3媒体查询(Media Queries)介绍

    媒体类型 all 所有设备 screen 电脑显示器 handheld 便携设备 tv 电视类型设备 print 打印用纸打印预览视图 关键字 and not(排除某种设备) only(限定某种设备) ...

  8. 【原创】Android AOP面向切面编程AspectJ

    一.背景: 在项目开发中,对 App 客户端重构后,发现用于统计用户行为的友盟统计代码和用户行为日志记录代码分散在各业务模块中,比如在视频模块,要想实现对用户对监控点的实时预览和远程回放行为进行统计, ...

  9. Xposed 学习笔记

    Xposed框架用法 1.配置AndroidManifest.xml <meta-data android:name="xposedmodule" android:value ...

  10. Django入门实战【3步曲】

      环境准备 junhongdeMacBook-Air:site-packages junhongchen$ python -V Python 2.7.10 junhongdeMacBook-Air: ...