最长上升子序列(LIS经典变型) dp学习~5
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1069
Monkey and Banana
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10875 Accepted Submission(s): 5660
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
题目:给出一些长方体,然后让你把他堆成塔,
要求下面的塔的要比上面的塔大(长和宽),
而且每一种长方体的数量都是无限的。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ; struct Node {
int x;
int y;
int z;
bool operator < (const Node &a) const
{
if(x!=a.x) return x < a.x;
else if(y!=a.y) return y < a.y;
else return z > a.z;
}
} node[N];
int dp[N]; int main()
{
int n;
int cnt = ;
while(~scanf("%d",&n))
{
if(n==) return ;
memset(dp,,sizeof(dp));
int x,y,z;
int t = ;
for(int i = ; i < n; i++){
scanf("%d%d%d",&x,&y,&z);
node[t].x = x;
node[t].y = y;
node[t].z = z;
t++;
node[t].x = x;
node[t].y = z;
node[t].z = y;
t++;
node[t].x = y;
node[t].y = x;
node[t].z = z;
t++;
node[t].x = y;
node[t].y = z;
node[t].z = x;
t++;
node[t].x = z;
node[t].y = x;
node[t].z = y;
t++;
node[t].x = z;
node[t].y = y;
node[t].z = x;
t++;
}
sort(node,node+*n);
int mmax = ;
for(int i = ; i < *n; i++)
dp[i] = node[i].z;
for(int i = ; i < *n; i++)
{
for(int j = ; j < i; j++)
{
if((node[i].x>node[j].x)&&(node[i].y>node[j].y))
dp[i] = max(dp[i],dp[j]+node[i].z);
}
mmax = max(mmax,dp[i]);
}
printf("Case %d: maximum height = ",cnt);
cnt++;
printf("%d\n",mmax);
}
return ;
}
最长上升子序列(LIS经典变型) dp学习~5的更多相关文章
- AT2827 最长上升子序列LIS(nlogn的DP优化)
题意翻译 给定一长度为n的数列,请在不改变原数列顺序的前提下,从中随机的取出一定数量的整数,并使这些整数构成单调上升序列. 输出这类单调上升序列的最大长度. 数据范围:1<=n<=10 ...
- 1. 线性DP 300. 最长上升子序列 (LIS)
最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- 最长上升子序列 LIS(Longest Increasing Subsequence)
引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…< ...
- 最长回文子序列LCS,最长递增子序列LIS及相互联系
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...
- 最长上升子序列LIS(51nod1134)
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...
- 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】
二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...
- 2.16 最长递增子序列 LIS
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...
- 题解 最长上升子序列 LIS
最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...
- 一个数组求其最长递增子序列(LIS)
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...
随机推荐
- 常用的 JS 排序算法整理
关于排序算法的问题可以在网上搜到一大堆,但是纯 JS 版比较零散,之前面试的时候特意整理了一遍,附带排序效率比较. //1.冒泡排序 var bubbleSort = function(arr) { ...
- 599. Minimum Index Sum of Two Lists
Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of favorite ...
- FPGA 设计总结(1)
1. set_input_delay和set_output_delay的选项-max和-min的理解 首先 input/output其实是模拟数据在端口外的延时,是一个外部约束条件,目的是为了约束FP ...
- 初识CSS3
1.CSS规则由两部分构成,即选择器和声明器 声明必须放在{}中并且声明可以是一条或者多条 每条声明由一个属性和值构成,属性和值用冒号分开,每条语句用英文冒号分开 注意: css的最后一条声明 ...
- python科学计算_numpy_线性代数/掩码数组/内存映射数组
1. 线性代数 numpy对于多维数组的运算在默认情况下并不使用矩阵运算,进行矩阵运算可以通过matrix对象或者矩阵函数来进行: matrix对象由matrix类创建,其四则运算都默认采用矩阵运算, ...
- UWP 手绘视频创作工具技术分享系列 - 文字的解析和绘制
本篇作为技术分享系列的第二篇,详细讲一下文字的解析和绘制,这部分功能的研究和最终实现由团队共同完成,目前还在寻找更理想的实现方式. 首先看一下文字绘制在手绘视频中的应用场景 文字是手绘视频中很重要的表 ...
- 微信小程序开发之picker选择器组件用法
picker组件时一个从底部弹起的可滚动的选择器(嵌入页面滚动器组件picker-view查看https://mp.weixin.qq.com/debug/wxadoc/dev/component/p ...
- CSS中的url()到底要不要加引号
如:url(images/background.gif)和 url("images/background.gif") 从安全角度来讲是要加上的 否则容易被xss 因为"& ...
- flex弹性布局语法介绍及使用
一.语法介绍 Flex布局(弹性布局) ,一种新的布局解决方案 可简单.快速的实现网页布局 目前市面浏览器已全部支持1.指定容器为flex布局 display: flex; Webkit内核的浏览器, ...
- Hibernate学习笔记(3)---hibernate关联关系映射
一对一关联 假设有两个持久化类(实体类)User与Address,它们之间存在一对一的关系 1,通过主键关联(个人偏向另外一种) User.hbm.xml文件配置 <id name=" ...