题意,给出边和权值,求出两个点间的最短距离。

用离线算法的时候有个地方不知道怎么处理了。在线的本来想用倍增的,但发现倍增算法貌似需要预处理深度而不是权值,不知道怎么处理。套一个rmq的模板吧,用来处理权值的时候。

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std; const int NN=100010; int n,m;
vector<pair<int,int> > edge[NN],qe[NN];
vector<int> q1,q2; int p[NN];
int find(int x)
{
if (p[x]!=x) p[x]=find(p[x]);
return p[x];
} int sum=0,ans[NN],dis[NN];
bool vis[NN]={0};
void lca(int u,int fa)
{
p[u]=u;
for (int i=0; i<edge[u].size(); i++)
{
int v=edge[u][i].first;
if (v==fa) continue;
dis[v]=dis[u]+edge[u][i].second;
lca(v,u);
p[v]=u;
}
vis[u]=true;
if (sum==m) return;
for (int i=0; i<qe[u].size(); i++)
{
int v=qe[u][i].first;
if (vis[v])
ans[qe[u][i].second]=dis[u]+dis[v]-2*dis[find(v)];
}
} int main()
{
int u,v,w;
char str[4];
scanf("%d%d",&n,&m);
for (int i=1; i<=n; i++)
{
edge[i].clear();
}
for (int i=1; i<=m; i++)
{
scanf("%d%d%d%s",&u,&v,&w,str);
edge[u].push_back(make_pair(v,w));
edge[v].push_back(make_pair(u,w));
}
scanf("%d",&m);
for (int i=0; i<m; i++)
{
scanf("%d%d",&u,&v);
qe[u].push_back(make_pair(v,i));
qe[v].push_back(make_pair(u,i));
ans[i]=0;
}
dis[1]=0;
lca(1,0);
for (int i=0; i<m; i++) printf("%d\n",ans[i]);
return 0;
}

在线的dfs+rmq模板套一个:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
using namespace std; const int NN=50000; int n,rt;
vector<pair<int,int> > edge[NN]; int depth=0;
int bn=0,b[NN*2]; //深度序列
int f[NN*2]; //对应深度序列中的结点编号
int p[NN]; //结点在深度序列中的首位置
int dis[NN]; //结点到根的距离
void dfs(int u,int fa)
{
int tmp=++depth;
b[++bn]=tmp; f[tmp]=u; p[u]=bn;
for (int i=0; i<edge[u].size(); i++)
{
int v=edge[u][i].first;
if (v==fa) continue;
dis[v]=dis[u]+edge[u][i].second;
dfs(v,u);
b[++bn]=tmp;
}
} int dp[NN*2][20];
void rmq_init(int n) //以深度序列做rmq
{
for (int i=1; i<=n; i++) dp[i][0]=b[i];
int m=floor(log(n*1.0)/log(2.0));
for (int j=1; j<=m; j++)
for (int i=1; i<=n-(1<<j)+1; i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int rmq(int l,int r)
{
int k=floor(log((r-l+1)*1.0)/log(2.0));
return min(dp[l][k],dp[r-(1<<k)+1][k]);
} int lca(int a,int b)
{
if (p[a]>p[b]) swap(a,b);
int k=rmq(p[a],p[b]);
return f[k];
} int main()
{
int m,u,v,w;
char str[4];
scanf("%d%d",&n,&m);
for (int i=1; i<=n; i++) edge[i].clear();
while (m--)
{
scanf("%d%d%d%s",&u,&v,&w,str);
edge[u].push_back(make_pair(v,w));
edge[v].push_back(make_pair(u,w));
}
rt=1; dis[rt]=0;
dfs(1,0);
rmq_init(bn);
scanf("%d",&m);
while (m--)
{
scanf("%d%d",&u,&v);
printf("%d\n",dis[u]+dis[v]-2*dis[lca(u,v)]);
}
return 0;
}

poj 1986LCA离线dfs+并查集的更多相关文章

  1. 【bzoj5183】[Baltic2016]Park 离线+对偶图+并查集

    题目描述 在Byteland的首都,有一个矩形围栏围起来的公园.在这个公园里树和访客都以一个圆形表示.公园有四个出入口,每个角落一个(1=左下角,2=右下角,3=右上角,4=左上角).访客能通过这些出 ...

  2. POJ 1562 Oil Deposits (并查集 OR DFS求联通块)

    Oil Deposits Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14628   Accepted: 7972 Des ...

  3. 距离LCA离线算法Tarjan + dfs + 并查集

    距离B - Distance in the Tree 还是普通的LCA但是要求的是两个节点之间的距离,学到了一些 一开始我想用带权并查集进行优化,但是LCA合并的过程晚于离线计算的过程,所以路径长度会 ...

  4. HDU 5441 离线处理 + 并查集

    题意:给n个节点m条带权值边的无向图.然后q个问题,每次询问点对的数目,点对需要满足的条件是:1)连通:2)其路径的最大权值不能超过询问值. 分析:如果没次询问一次,dfs一次,很可能超时,因此可以用 ...

  5. poj 1733(带权并查集+离散化)

    题目链接:http://poj.org/problem?id=1733 思路:这题一看就想到要用并查集做了,不过一看数据这么大,感觉有点棘手,其实,我们仔细一想可以发现,我们需要记录的是出现过的节点到 ...

  6. poj 1182 食物链 (并查集)

    http://poj.org/problem?id=1182 关于并查集 很好的一道题,开始也看了一直没懂.这次是因为<挑战程序设计竞赛>书上有讲解看了几遍终于懂了.是一种很好的思路,跟网 ...

  7. POJ 1182 食物链(并查集拆点)

    [题目链接] http://poj.org/problem?id=1182 [题目大意] 草原上有三种物种,分别为A,B,C A吃B,B吃C,C吃A. 1 x y表示x和y是同类,2 x y表示x吃y ...

  8. 分珠(dfs+并查集)

    1140 分珠 时间限制:500MS  内存限制:65536K提交次数:24 通过次数:18 题型: 编程题   语言: G++;GCC Description 如下图所示,有若干珠子,每颗珠子重量不 ...

  9. Codeforces 1027D Mouse Hunt (强连通缩点 || DFS+并查集)

    <题目链接> 题目大意: 有n个房间,每个房间都会有一只老鼠.处于第i个房间的老鼠可以逃窜到第ai个房间中.现在要清理掉所有的老鼠,而在第i个房间中防止老鼠夹的花费是ci,问你消灭掉所有老 ...

随机推荐

  1. [Tyvj模拟赛]运

    运 题目 [问题背景]zhx 和妹子们玩数数游戏. [问题描述] 仅包含4或7的数被称为幸运数.一个序列的子序列被定义为从序列中删去若干个数, 剩下的数组成的新序列.两个子序列被定义为不同的当且仅当其 ...

  2. 神经网络中的BP神经网络和贝叶斯

    1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体 ...

  3. python细碎语法点

    在系统入门python有的是没有遇到,有的是学过了缺乏使用没有记住,就开篇随笔记录这些基础的语法点,随时更新. with...as... 也就是说with是一个控制流语句,跟if/for/while/ ...

  4. Orleans稍微复杂的例子—互动

    这是Orleans系列文章中的一篇.首篇文章在此 我费力费心的翻译过官方的教程,但是本人英语词汇量不高,可是架不住电子词典啊-只要肯花时间,我这些内容谁都可以做出来.所以这个事例告诉我们一个道理,那就 ...

  5. 社交系统ThinkSNS+ APP更新至V0.8.3---新增打赏、用户认证

    一.ThinkSNS简介 目前社交系统ThinkSNS(简称TS)有两个版本并行: ThinkSNS V4----最新版本ThinkSNS V4.6.1,第一次发布时间为2015年7月15日,最近更新 ...

  6. .NET并行处理和并发1-Threads and Theading

    线程是操作系统分配处理器时间的基本单元,并且进程中可以有多个线程同时执行代码. 每个线程都维护异常处理程序.调度优先级和一组系统用于在调度该线程前保存线程上下文的结构. 线程上下文包括为使线程在线程的 ...

  7. Oracle基础--命令

    ====================== 基础命令====================== 1.su – oracle 不是必需,适合于没有DBA密码时使用,可以不用密码来进入sqlplus界 ...

  8. [Python] wxPython 菜单栏控件学习总结(原创)

    1.总结 1.大体创建过程 1.创建一个 菜单栏  : menuBar = wx.MenuBar() 相当于这个白色地方,没有File这个菜单 2.创建 菜单 : fileMenu = wx.Menu ...

  9. You don't know js

    "Give me a chance to know you. " 更多内容: 移步这里 1. 作用域 1.1. 编译原理 尽管通常将 JavaScript 归类为"动态& ...

  10. jdbc电话本项目

    整体思路:在登陆之后才能查看自己的电话本,电话本中包含用户名,联系人名字,电话,性别,分类: 1.登陆注册页面--数据库User表,注册登陆使用 2.电话本的前段显示,用表格和表单, 3.创建存取的电 ...