题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695

题意:

给出n、m、k ,求出1<=x<=n, 1<=y<=m 且gcd(x,y) == k 的(x,y)的对数

解析:

显然就是求 [1,n/k] 与 [1, m/k]有多少数对的最大公约数是1

莫比乌斯入门题

我们设

为满足的对数

为满足的对数

那么,很显然,反演后得到

我们所需要的答案便是  f(1) = ∑i=1µ(i)*(n/i)*(m/i)  ,求解这个式子我们可以分块求和,复杂度为O(√n)。

最后注意由于题目要求,需要将重复的去掉。

代码如下:

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring> using namespace std;
const int maxn=; int vis[maxn];
int prime[maxn];
int cnt;
int mu[maxn];
int sum[maxn]; void init()
{
memset(vis,,sizeof(vis));
cnt=;
mu[]=;
for(int i=;i<maxn;i++)
{
if(!vis[i])
{
prime[cnt++]=i;
mu[i]=-;
}
for(int j=;j<cnt&&i*prime[j]<maxn;j++)
{
vis[i*prime[j]]=;
if(i%prime[j])
mu[i*prime[j]]=-mu[i];
else
{
mu[i*prime[j]]=;
break;
}
}
}
sum[]=;
for(int i=;i<maxn;i++)
sum[i]=sum[i-]+mu[i];
} int main()
{
int a,b,c,d,k;
init();
int T,ca=;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("Case %d: ",ca++);
if(k==)
{
printf("0\n");
continue;
}
b=b/k;
d=d/k;
if(b>d)
swap(b,d);
long long ans1=;
int last;
for(int i=;i<=b;i=last+)
{
last=min(b/(b/i),d/(d/i));
ans1+=(long long)(sum[last]-sum[i-])*(b/i)*(d/i);
}
long long ans2=;
for(int i=;i<=b;i=last+)
{
last=b/(b/i);
ans2+=(long long)(sum[last]-sum[i-])*(b/i)*(b/i);
}
long long ans=ans1-ans2/;
printf("%lld\n",ans);
}
return ;
}

hdu1695 GCD(莫比乌斯入门题)的更多相关文章

  1. hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对

    /** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b ...

  2. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  3. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  4. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

  5. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  6. hdu1796:容斥入门题

    简单的容斥入门题.. 容斥基本的公式早就知道了,但是一直不会写. 下午看到艾神在群里说的“会枚举二进制数就会容斥”,后来发现还真是这样.. 然后直接贴代码了 #include <iostream ...

  7. [2009国家集训队]小Z的袜子(hose)(BZOJ2038+莫队入门题)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题目: 题意:中文题意,大家都懂. 思路:莫队入门题.不过由于要去概率,所以我们假 ...

  8. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  9. 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

    最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...

随机推荐

  1. 如何开始使用bootstrap

    登陆Bootstrap官网:http://getbootstrap.com/ Bootstrap中的JS插件依赖于jQuery,因此jQuery要在Bootstrap之前引用 bootstrap框架初 ...

  2. [C++]智能指针的实现与使用

    智能指针 智能指针是当我们在使用对象时,有时会把对象的内存分配在堆上忘记释放,导致内存泄露,并且当多个指针共享同一个对象的内存时,容易出现重复释放内存,导致错误. 我们针对所需要共享的对象,手动完成一 ...

  3. 途虎养车Tuhu商城系统开发

    途虎养车Tuhu商城系统开发,咨询:何经理152-2217-7508(微信同号)途虎养车商城小程序开发,途虎养车商城小程序平台开发,途虎养车商城小程序系统开发. 为什么能做得这么好,里面的门道确实不少 ...

  4. Java IO 之 BIO、NIO、AIO

    1.BIO.NIO.AIO解释 Java BIO : 同步并阻塞 (Blocking IO) 一个连接一个线程 即客户端有连接请求时服务器端就需要启动一个线程进行处理,如果这个连接不做任何事情会造成不 ...

  5. FillConsoleOutputAttribute 函数--指定区域填充控制台输出属性

    FillConsoleOutputAttribute函数 来源:https://msdn.microsoft.com/en-us/library/windows/desktop/ms682663(v= ...

  6. centos中安装mysql

    一.首先输入指令 rpm -qa|grep mysql 检查操作系统中是否已经安装了MySQL 可以通过 yum list | grep mysql 命令来查看yum上提供的mysql数据库可下载的版 ...

  7. 网站限制某些ip访问,仅允许某些ip…

    代码: function getIP() { return isset($_SERVER["HTTP_X_FORWARDED_FOR"])?$_SERVER["HTTP_ ...

  8. 一份关于webpack2和模块打包的新手指南

    webpack已成为现代Web开发中最重要的工具之一.它是一个用于JavaScript的模块打包工具,但是它也可以转换所有的前端资源,例如HTML和CSS,甚至是图片.它可以让你更好地控制应用程序所产 ...

  9. 超超超简单的bfs——POJ-3278

    Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 89836   Accepted: 28175 ...

  10. git for windows+TortoiseGit客户端的使用二

    通常都是使用git协议方式来连接服务器,然后使用https方式的连接方法,是如何设置的: 先登录github服务器,获取远程服务器仓库: 在本地创建一个存放仓库的目录,然后使用tortoiseGit客 ...