POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats
Description Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided. Your job is to help the children and present a solution. Input The input contains several test cases. The last test case is followed by two zeros. Output For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them. Sample Input 4 5 Sample Output 3 5 Source |
题目大意:
有$c$个孩纸,$n$个邻居,给出访问每个邻居会得到的糖果数量,在不考虑得到糖果总数量的情况下,试给出一种访问邻居的方案,使得到的糖果能被孩纸们完全均分。
基本思路:
1、此题与POJ2356是一样的思路,此题题解可看这里,下面只作简略分析。
2、此题数据保证$c\leqslant n$,因此由鸽巢原理,在$mod\ n$环下,令$S(n)=a_1+a_2+\cdots+a_n$,有$S(n_1)=S(n_2)$,即$[S(n_2)-S(n_1)]\%n=a_{n_1+1}+a_{n_1+2}+\cdots+a_{n_2}=0$,所以一定有解。
3、若此题不保证$c\leqslant n$的约束,则可以出现无解的情况,比如有$5$个孩纸,但只有$1$个邻居$1$颗糖。
4、若此题不保证$a_i\geqslant 1$的约束,则可以出现某个邻居不给糖的情况($a_i=0$,给$0$颗糖),这样对结果不影响,但输出时可以忽略掉$0$的项。
5、如果无尽WA,请检查是否输出的是邻居的编号而不是糖的数目。
6、如果无尽TLE,这是因为此题有多组数据,请试试输出最小的解。
AC代码:
#include <stdio.h>
#include <string.h> const int maxn=;
int c, n;
int sw[maxn], sum[maxn], sgn[maxn]; int main() {
while(~scanf("%d%d",&c,&n)&&c) {
int l=, r=maxn;
memset(sgn, 0xff, sizeof(sgn)); sgn[]=;
for(int i=; i<=n; i++) {
scanf("%d", sw+i);
sum[i]=(sum[i-]+sw[i])%c;
if(!~sgn[sum[i]]) {
sgn[sum[i]]=i;
}else if(i-sgn[sum[i]]<r-l) {
l=sgn[sum[i]];
r=i;
}
}
for(int i=l+; i<r; i++)
printf("%d ", i);
printf("%d\n", r);
}
return ;
}
POJ 3370
本文地址:http://www.cnblogs.com/BlackStorm/p/5245868.html
POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理的更多相关文章
- [POJ3370]&[HDU1808]Halloween treats 题解(鸽巢原理)
[POJ3370]&[HDU1808]Halloween treats Description -Every year there is the same problem at Hallowe ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...
- POJ 3370 Halloween treats 鸽巢原理 解题
Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...
- POJ 3370 Halloween treats( 鸽巢原理简单题 )
链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...
- Halloween treats HDU 1808 鸽巢(抽屉)原理
Halloween treats Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- [POJ 3370] Halloween treats
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7143 Accepted: 2641 ...
- poj2356 Find a multiple(抽屉原理|鸽巢原理)
/* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...
- poj 2356 Find a multiple(鸽巢原理)
Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...
随机推荐
- SQL Server-交叉联接、内部联接基础回顾(十二)
前言 本节开始我们进入联接学习,关于连接这一块涉及的内容比较多,我们一步一步循序渐进学习,简短内容,深入的理解,Always to review the basics. 交叉联接(CROSS JOIN ...
- 【NLP】条件随机场知识扩展延伸(五)
条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应 ...
- 跟我学习NHibernate (1)
引言:Nibernate概述 NHibernate是一个ORM框架,NHibernate是一个把C#对象世界和关系世界数据库之间联系起来的一座桥梁.NHibernate 能自动映射实体模型到数据库,所 ...
- Sass学习笔记之入门篇
Sass又名SCSS,是CSS预处理器之一,,它能用来清晰地.结构化地描述文件样式,有着比普通 CSS 更加强大的功能. Sass 能够提供更简洁.更优雅的语法,同时提供多种功能来创建可维护和管理的样 ...
- Linux内核配置、编译及Makefile简述
Hi,大家好!我是CrazyCatJack.最近在学习Linux内核的配置.编译及Makefile文件.今天总结一下学习成果,分享给大家^_^ 1.解压缩打补丁 首先是解压缩你获取到的Linux内核. ...
- 工作中遇到的一个多线程下导致RCW无法释放的问题
最近有个同事在调用一个类库中的方法时遇到了一个问题,异常信息如下: 尝试释放正在使用的RCW,活动线程或其他线程上正在使用该 RCW,释放正在使用的 RCW 的尝试会导致损坏或数据丢失. 该方法中对w ...
- UEditor百度富文本编辑器--让编辑器自适应宽度的解决方案
UEditor百度富文本编辑器的initialFrameWidth属性,默认值是1000. 不能够自适应屏幕宽度.如图1: 刚开始的时候,我是直接设置initialFrameWidth=null的.效 ...
- 你所不知道的linq(二)
上一篇说了from in select的本质,具体参见你所不知道的linq.本篇说下from...in... from... in... select 首先上一段代码,猜猜结果是什么? class P ...
- 在基于MVC的Web项目中使用Web API和直接连接两种方式混合式接入
在我之前介绍的混合式开发框架中,其界面是基于Winform的实现方式,后台使用Web API.WCF服务以及直接连接数据库的几种方式混合式接入,在Web项目中我们也可以采用这种方式实现混合式的接入方式 ...
- 带你玩转Visual Studio
带你玩转Visual Studio 带你新建一个工程 工程目录下各文件的含义 解决方案与工程 在这之前先了解一个概念:解决方案与工程. 解决方案(Solution):一个大型项目的整体的工作环境: 工 ...