本文结构:

  • CART算法有两步
  • 回归树的生成
  • 分类树的生成
  • 剪枝

CART - Classification and Regression Trees

分类与回归树,是二叉树,可以用于分类,也可以用于回归问题,最先由 Breiman 等提出。

分类树的输出是样本的类别, 回归树的输出是一个实数。


CART算法有两步:

决策树生成和剪枝。

决策树生成:递归地构建二叉决策树的过程,基于训练数据集生成决策树,生成的决策树要尽量大;

自上而下从根开始建立节点,在每个节点处要选择一个最好的属性来分裂,使得子节点中的训练集尽量的纯。

不同的算法使用不同的指标来定义"最好":

分类问题,可以选择GINI,双化或有序双化;
回归问题,可以使用最小二乘偏差(LSD)或最小绝对偏差(LAD)。

决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时损失函数最小作为剪枝的标准。

这里用代价复杂度剪枝 Cost-Complexity Pruning(CCP)


回归树的生成

回归树模型表示为:

其中,数据空间被划分成了 R1~Rm 单元,每个单元上有一个固定的输出值 cm。
这样就可以计算模型输出值与实际值的误差:

我们希望每个单元上的 cm,可以使得这个平方误差最小化,易知当 cm 为相应单元上的所有实际值的均值时,可以达到最优

那么如何生成这些单元划分?

假设,我们选择变量 xj 为切分变量,它的取值 s 为切分点,那么就会得到两个区域:

当 j 和 s 固定时,我们要找到两个区域的代表值 c1,c2 使各自区间上的平方差最小,

前面已经知道 c1,c2 为区间上的平均,

那么对固定的 j 只需要找到最优的 s,
然后通过遍历所有的变量,我们可以找到最优的 j,
这样我们就可以得到最优对(j,s),并得到两个区间。

上述过程表示的算法步骤为:

即:
(1)考虑数据集 D 上的所有特征 j,遍历每一个特征下所有可能的取值或者切分点 s,将数据集 D 划分成两部分 D1 和 D2
(2)分别计算上述两个子集的平方误差和,选择最小的平方误差对应的特征与分割点,生成两个子节点。
(3)对上述两个子节点递归调用步骤(1)(2),直到满足停止条件。


分类树的生成

(1)对每个特征 A,对它的所有可能取值 a,将数据集分为 A=a,和 A!=a 两个子集,计算集合 D 的基尼指数:

(2)遍历所有的特征 A,计算其所有可能取值 a 的基尼指数,选择 D 的基尼指数最小值对应的特征及切分点作为最优的划分,将数据分为两个子集。
(3)对上述两个子节点递归调用步骤(1)(2), 直到满足停止条件。
(4)生成 CART 决策树。

其中 GINI 指数:

1、是一种不等性度量;
2、是介于 0~1 之间的数,0-完全相等,1-完全不相等;
3、总体内包含的类别越杂乱,GINI指数就越大(跟熵的概念很相似)

定义:
分类问题中,假设有 K 个类,样本属于第 k 类的概率为 pk,则概率分布的基尼指数为:

样本集合 D 的基尼指数为:

其中 Ck 为数据集 D 中属于第 k 类的样本子集。

如果数据集 D 根据特征 A 在某一取值 a 上进行分割,得到 D1 ,D2 两部分后,那么在特征 A 下集合 D 的基尼指数为:

其中算法的停止条件有:

1、节点中的样本个数小于预定阈值,
2、样本集的Gini系数小于预定阈值(此时样本基本属于同一类),
3、或没有更多特征。

下面来看一下例子:

最后一列是我们要分类的目标。

例如,按照“体温为恒温和非恒温”进行划分,计算如下:

恒温时包含哺乳类5个、鸟类2个

非恒温时包含爬行类3个、鱼类3个、两栖类2个

得到特征‘体温’下数据集的GINI指数:

最后我们要选 GINI_Gain 最小的特征和相应的划分。


剪枝

就是在完整的决策树上,剪掉一些子树,使决策树变小。

是为了减少决策树过拟合,如果每个属性都被考虑,那决策树的叶节点所覆盖的训练样本基本都是“纯”的,这时候的决策树对训练集表现很好,但是对测试集的表现就会比较差。

决策树很容易发生过拟合,可以改善的方法有:
1、通过阈值控制终止条件,避免树形结构分支过细。
2、通过对已经形成的决策树进行剪枝来避免过拟合。
3、基于Bootstrap的思想建立随机森林。

这里我们用 代价复杂度剪枝 Cost-Complexity Pruning(CCP) 方法来对 CART 进行剪枝。

从整个树 T0 开始,先剪去一棵子树,生成子树 T1,
在 T1 上再剪去一棵子树,生成子树 T2,
重复这个操作,直到最后只剩下一个根节点的子树 Tn,
得到了子树序列 T0~Tn,
利用独立的验证数据集,计算每个子树的平方误差或者基尼指数,
选择误差最小的那个子树作为最优的剪枝后的树。

那么这个子树序列是怎么剪出来的?
因为建模的时候,目标就是让损失函数达到最优,那剪枝的时候也用损失函数来评判。

损失函数是什么呢?
对任意子树 T,损失函数如下形式,cost-complexity function:

其中 CT 为误差(例如基尼指数),|T| 为 T 的叶节点个数,alpha 为非负参数,用来权衡训练数据的拟合程度和模型的复杂度。

alpha 固定时,一定可以找到一个子树 T,使得等式右边达到最小,那么这个 T 就叫做最优子树。

对固定的 alpha 找到损失函数最小的子树 T,二者之间有这样的关系:alpha 大时,T 偏小,alpha 小时,T 偏大。

那如果将 alpha 从小增大设置为一个序列,T 就可以从大到小得到相应的最优子树序列,并且还是嵌套的关系。

剪的时候,哪个树杈是可以被剪掉的呢?
很容易想到的是,如果剪掉后和没剪时的损失函数一样或者差别不大的话,那当然是剪掉好了,只留下一个点,就能代表一个树杈,这样树就被简化了。

以节点 t 为单节点树时,它的损失函数为:(后面剪枝后就可以用一个点来代替一个树杈)

以节点 t 为根节点的子树 Tt,它的损失函数为:(后面剪枝这个树杈)

那么接下来的问题就是能不能找到这样的点呢?
上面令 alpha=0,就有 Tt 和 t 的损失函数的关系为:

那么增大 alpha,当它为如下形式时:

此时,Tt 和 t 的损失函数相等,而 t 的节点少,那么保留 t 就可以了,Tt 就可以剪掉了。

那么在剪枝算法的第三步时,对每个 t,计算一下 gt,也就是能找到子树 Tt 和 t 的损失函数相等时的 alpha,

每个点 t 都可以找到符合这样条件的 alpha,
遍历所有节点 t 后,找到最小的这个 alpha,

第四步,再把这个 alpha 对应的节点 t 的子树 Tt 剪掉,
并用多数投票表决法决定 t 上的类别,
这样得到的剪枝后的树 T 记为 Tk,
这时的 alpha 记为 alpha k,

经过上面步骤,会得到:
α1⩽α2⩽ ... ⩽αk⩽ ...
T1⊇T2⊇ ... ⊇Tk⊇ ... ⊇{root}

例子:

下面这棵树,有三个点 t1≡root,t2,t3

α(1)=0

计算每个点的 gt:

t2,t3 时的 gt 相等,此时我们可以选择剪枝少的点,那就是 t3 剪掉。

并且 α(2)=1/8

这时剩下 t1,t2,再继续计算 gt:

t2 的小,所以剪掉 t2:

并且令 α(3)=1/8

最后剩下 t1,计算后 gt=1/4,所以 α(4)=1/4。

如此我们得到:α(0)=0,α(1)=1/8,α(2)=1/8,α(3)=1/4
并且得到了相应的子树,
接下来就可以利用独立的验证数据集,计算每个子树的平方误差或者基尼指数,

【机器学习笔记之三】CART 分类与回归树的更多相关文章

  1. CART分类与回归树与GBDT(Gradient Boost Decision Tree)

    一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策 ...

  2. CART分类与回归树 学习笔记

    CART:Classification and regression tree,分类与回归树.(是二叉树) CART是决策树的一种,主要由特征选择,树的生成和剪枝三部分组成.它主要用来处理分类和回归问 ...

  3. 数据挖掘十大经典算法--CART: 分类与回归树

    一.决策树的类型  在数据挖掘中,决策树主要有两种类型: 分类树 的输出是样本的类标. 回归树 的输出是一个实数 (比如房子的价格,病人呆在医院的时间等). 术语分类和回归树 (CART) 包括了上述 ...

  4. CART 分类与回归树

    from www.jianshu.com/p/b90a9ce05b28 本文结构: CART算法有两步 回归树的生成 分类树的生成 剪枝 CART - Classification and Regre ...

  5. CART:分类与回归树

    起源:决策树切分数据集 决策树每次决策时,按照一定规则切分数据集,并将切分后的小数据集递归处理.这样的处理方式给了线性回归处理非线性数据一个启发. 能不能先将类似特征的数据切成一小部分,再将这一小部分 ...

  6. 机器学习笔记(四)Logistic回归模型实现

     一.Logistic回归实现 (一)特征值较少的情况 1. 实验数据 吴恩达<机器学习>第二课时作业提供数据1.判断一个学生能否被一个大学录取,给出的数据集为学生两门课的成绩和是否被录取 ...

  7. 机器学习笔记(三)Logistic回归模型

    Logistic回归模型 1. 模型简介: 线性回归往往并不能很好地解决分类问题,所以我们引出Logistic回归算法,算法的输出值或者说预测值一直介于0和1,虽然算法的名字有“回归”二字,但实际上L ...

  8. 吴恩达机器学习笔记18-多类别分类:一对多(Multiclass Classification_ One-vs-all)

    对于之前的一个,二元分类问题,我们的数据看起来可能是像这样: 对于一个多类分类问题,我们的数据集或许看起来像这样: 我用3 种不同的符号来代表3 个类别,问题就是给出3 个类型的数据集,我们如何得到一 ...

  9. 机器学习笔记(4)Logistic回归

    模型介绍 对于分类问题,其得到的结果值是离散的,所以通常情况下,不适合使用线性回归方法进行模拟. 所以提出Logistic回归模型. 其假设函数如下: \[ h_θ(x)=g(θ^Tx) \] 函数g ...

随机推荐

  1. [leetcode-605-Can Place Flowers]

    Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, ...

  2. [leetcode-598-Range Addition II]

    Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...

  3. hasOwnProperty的用法

    判断一个属性倒底是在原型中,还是在实例中 hasOwnProperty() 来个栗子 function Person(){ }; Person.prototype.name = "hezhi ...

  4. tp框架为什么验证码加载不出来?----- ob_clean() 可解决

    在用tp做验证码时,代码逻辑都正确,但就是加载不出图片来,如何解决呢?在创建验证码之前加上 ob_clean(); public function haha(){ ob_clean(); $v = n ...

  5. JSP include HTML出现乱码 问题解决

    Problem? 当使用<jsp:include page="top.html"></jsp:include>引入html文件时, 并且jsp 和 html ...

  6. Android hook神器frida(一)

    运行环境 ● Python – latest 3.x is highly recommended ● Windows, macOS, or Linux安装方法使用命令 sudo pip install ...

  7. Java编程思想总结笔记The first chapter

    总觉得书中太啰嗦,看完总结后方便日后回忆,本想偷懒网上找别人的总结,无奈找不到好的,只好自食其力,尽量总结得最好. 第一章  对象导论 看到对象导论觉得这本书 目录: 1.1 抽象过程1.2 每个对象 ...

  8. Js中的数据属性和访问器属性

    Js中的数据属性和访问器属性 在javaScript中,对象的属性分为两种类型:数据属性和访问器属性. 一.数据属性 1.数据属性:它包含的是一个数据值的位置,在这可以对数据值进行读写. 2.数据属性 ...

  9. cookie的存取

    cookie的存取 /写cookies 一路径为标准,Path – 路径 function setCookie(name, value, time) { var strsec = getsec(tim ...

  10. 深入 HTML5 Web Worker 应用实践:多线程编程

    深入 HTML5 Web Worker 应用实践:多线程编程 HTML5 中工作线程(Web Worker)简介 至 2008 年 W3C 制定出第一个 HTML5 草案开始,HTML5 承载了越来越 ...