【机器学习笔记之一】深入浅出学习K-Means算法
摘要:在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。
在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。
问题
K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法(Wikipedia链接)
K-Means要解决的问题
算法概要
这个算法其实很简单,如下图所示:
从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。
然后,K-Means的算法如下:
- 随机在图中取K(这里K=2)个种子点。
- 然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(上图中,我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点)
- 接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步)
- 然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。
这个算法很简单,但是有些细节我要提一下,求距离的公式我不说了,大家有初中毕业水平的人都应该知道怎么算的。我重点想说一下“求点群中心的算法”。
求点群中心的算法
一般来说,求点群中心点的算法你可以很简的使用各个点的X/Y坐标的平均值。不过,我这里想告诉大家另三个求中心点的的公式:
1)Minkowski Distance公式——λ可以随意取值,可以是负数,也可以是正数,或是无穷大。
2)Euclidean Distance公式——也就是第一个公式λ=2的情况
3)CityBlock Distance公式——也就是第一个公式λ=1的情况
这三个公式的求中心点有一些不一样的地方,我们看下图(对于第一个λ在0-1之间)。
(1)Minkowski Distance (2)Euclidean Distance (3) CityBlock Distance
上面这几个图的大意是他们是怎么个逼近中心的,第一个图以星形的方式,第二个图以同心圆的方式,第三个图以菱形的方式。
K-Means的演示
如果你以”K Means Demo“为关键字到Google里查你可以查到很多演示。这里推荐一个演示:http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
操作是,鼠标左键是初始化点,右键初始化“种子点”,然后勾选“Show History”可以看到一步一步的迭代。
注:这个演示的链接也有一个不错的K Means Tutorial。
K-Means++算法
K-Means主要有两个最重大的缺陷——都和初始值有关:
- K是事先给定的,这个K值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目K)
- K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)
我在这里重点说一下K-Means++算法步骤:
- 先从我们的数据库随机挑个随机点当“种子点”。
- 对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
- 然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
- 重复第(2)和第(3)步直到所有的K个种子点都被选出来。
- 进行K-Means算法。
相关的代码你可以在这里找到“implement the K-means++ algorithm”(墙)另,Apache的通用数据学库也实现了这一算法
K-Means算法应用
看到这里,你会说,K-Means算法看来很简单,而且好像就是在玩坐标点,没什么真实用处。而且,这个算法缺陷很多,还不如人工呢。是的,前面的例子只是玩二维坐标点,的确没什么意思。但是你想一下下面的几个问题:
1)如果不是二维的,是多维的,如5维的,那么,就只能用计算机来计算了。
2)二维坐标点的X,Y 坐标,其实是一种向量,是一种数学抽象。现实世界中很多属性是可以抽象成向量的,比如,我们的年龄,我们的喜好,我们的商品,等等,能抽象成向量的目的就是可以让计算机知道某两个属性间的距离。如:我们认为,18岁的人离24岁的人的距离要比离12岁的距离要近,鞋子这个商品离衣服这个商品的距离要比电脑要近,等等。
只要能把现实世界的物体的属性抽象成向量,就可以用K-Means算法来归类了。
在《k均值聚类(K-means)》 这篇文章中举了一个很不错的应用例子,作者用亚洲15支足球队的2005年到1010年的战绩做了一个向量表,然后用K-Means把球队归类,得出了下面的结果,呵呵。
- 亚洲一流:日本,韩国,伊朗,沙特
- 亚洲二流:乌兹别克斯坦,巴林,朝鲜
- 亚洲三流:中国,伊拉克,卡塔尔,阿联酋,泰国,越南,阿曼,印尼
其实,这样的业务例子还有很多,比如,分析一个公司的客户分类,这样可以对不同的客户使用不同的商业策略,或是电子商务中分析商品相似度,归类商品,从而可以使用一些不同的销售策略,等等。
最后给一个挺好的算法的幻灯片:http://www.cs.cmu.edu/~guestrin/Class/10701-S07/Slides/clustering.pdf
【机器学习笔记之一】深入浅出学习K-Means算法的更多相关文章
- Python机器学习笔记:奇异值分解(SVD)算法
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 奇异值分解(Singu ...
- 机器学习实战 - python3 学习笔记(一) - k近邻算法
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...
- 机器学习笔记(一)· 感知机算法 · 原理篇
这篇学习笔记强调几何直觉,同时也注重感知机算法内部的动机.限于篇幅,这里仅仅讨论了感知机的一般情形.损失函数的引入.工作原理.关于感知机的对偶形式和核感知机,会专门写另外一篇文章.关于感知机的实现代码 ...
- 猪猪的机器学习笔记(十四)EM算法
EM算法 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...
- 【机器学习笔记五】聚类 - k均值聚类
参考资料: [1]Spark Mlib 机器学习实践 [2]机器学习 [3]深入浅出K-means算法 http://www.csdn.net/article/2012-07-03/2807073- ...
- Python机器学习笔记:深入学习Keras中Sequential模型及方法
Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷 ...
- coursera机器学习笔记-神经网络,学习篇
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- 机器学习笔记-----AP(affinity propagat)算法讲解及matlab实现
大家好,我是人见人爱,花见花开的小花.哈哈~~! 在统计和数据挖掘中,亲和传播(AP)是基于数据点之间"消息传递"概念的聚类算法.与诸如k-means或k-medoids的聚类算法 ...
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- 《机器学习实战》---第二章 k近邻算法 kNN
下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @au ...
随机推荐
- fiddler4手机抓包
- SQL手动注入解析
作者:震灵 注入环境:DVWA 探测步骤: 1.首先探测是否可以注入以及注入方式 原SQL语句为 SELECT * FROM xxx WHERE a=''; 注入后为 SELECT * FROM xx ...
- 【Android Developers Training】 50. 控制相机
注:本文翻译自Google官方的Android Developers Training文档,译者技术一般,由于喜爱安卓而产生了翻译的念头,纯属个人兴趣爱好. 原文链接:http://developer ...
- C++ inline函数与编译器设置
1. 经过测试#define与inline的速度几乎没有区别. 2. inline函数更为安全,有效避免了#define二义性问题.inline是真正的函数,而#define只是在字符串意义上的宏替换 ...
- 使用vue实现tab操作
在使用jQuery类库实现tab功能时,是获取鼠标在mousenter或click时的index值,然后切换到当前的标题和内容,把其他的标题和内容的状态去掉: $('.tab .title').fin ...
- 我的第一篇博文:C++最初的路-经典的小游戏走迷宫
写在开始:这个博客建于大二下学期.2年多的学习,从网上借鉴的大牛经验,代码,指导数不胜数,而其中大部分来自别人的博客,于是期待有一天也能把自己在学习过程中的一些经验拿出来与大家分享. 其实我凝望了C+ ...
- JavaScript一个cookie存储的类
所有输出都在浏览器的控制台中 <script type="text/javascript"> /** * cookieStorage.js * 本类实现像localSt ...
- C# string.Format()用法
C# string.Format()用法例: sting szNenryoSBTCD="abc"; Datarow[] drs = this.dtNenRyoDat.Select( ...
- 富文本编辑器UEditor自定义工具栏(一、基础配置与字体、背景色、行间距、超链接实现)
导读:UEditor 是由百度「FEX前端研发团队」开发的所见即所得富文本web编辑器,功能强大,可定制,是一款优秀的国产在线富文本编辑器,编辑器内可插入图片.音频.视频等. 一.UEditor自定义 ...
- iOS图解多线程
前言 多线程一直是iOS开发中重中之重的话题,无论是面试还是真正在公司中进行业务开发,都会经常使用到多线程来开发.笔者在简书上看到一张图,记录的是多线程的相关知识,笔者认为这是非常好的,推荐给大家: ...