图的BFS
目录:
https://blog.csdn.net/weixin_40953222/article/details/80544928
一、算法的基本思路
广度优先搜索类似于树的层次遍历过程。
它需要借助一个队列来实现。如图2-1-1所示,要想遍历从v0到v6的每一个顶点,我们可以设v0为第一层,v1、v2、v3为第二层,v4、v5为第三层,v6为第四层,再逐个遍历每一层的每个顶点。
具体过程如下:
1.准备工作:
创建一个visited数组,用来记录已被访问过的顶点;
创建一个队列,用来存放每一层的顶点;
初始化图G。
2.从图中的v0开始访问,将的visited[v0]数组的值设置为true,同时将v0入队。
3.只要队列不空,则重复如下操作:
(1)队头顶点u出队。
(2)依次检查u的所有邻接顶点w,若visited[w]的值为false,则访问w,并将visited[w]置为true,同时将w入队。
二、过程:
白色表示未被访问,灰色表示即将访问,黑色表示已访问。
visited数组:0表示未访问,1表示以访问。
队列:队头出元素,队尾进元素。
1.初始时全部顶点均未被访问,visited数组初始化为0,队列中没有元素。
2.即将访问顶点v0。
3.访问顶点v0,并置visited[0]的值为1,同时将v0入队。
4.将v0出队,访问v0的邻接点v2。判断visited[2],因为visited[2]的值为0,访问v2。
5.将visited[2]置为1,并将v2入队。
6.访问v0邻接点v1。判断visited[1],因为visited[1]的值为0,访问v1。
7.将visited[1]置为0,并将v1入队。
8.判断visited[3],因为它的值为0,访问v3。将visited[3]置为0,并将v3入队。
9.v0的全部邻接点均已被访问完毕。将队头元素v2出队,开始访问v2的所有邻接点。
开始访问v2邻接点v0,判断visited[0],因为其值为1,不进行访问。
继续访问v2邻接点v4,判断visited[4],因为其值为0,访问v4,如下图:
10.将visited[4]置为1,并将v4入队。
11.v2的全部邻接点均已被访问完毕。
将队头元素v1出队,开始访问v1的所有邻接点。开始访问v1邻接点v0,因为visited[0]值为1,不进行访问。
继续访问v1邻接点v4,因为visited[4]的值为1,不进行访问。
继续访问v1邻接点v5,因为visited[5]值为0,访问v5,如下图:
12.将visited[5]置为1,并将v5入队。
13.v1的全部邻接点均已被访问完毕,将队头元素v3出队,开始访问v3的所有邻接点。
开始访问v3邻接点v0,因为visited[0]值为1,不进行访问。
继续访问v3邻接点v5,因为visited[5]值为1,不进行访问。
14.v3的全部邻接点均已被访问完毕,将队头元素v4出队,开始访问v4的所有邻接点。
开始访问v4的邻接点v2,因为visited[2]的值为1,不进行访问。
继续访问v4的邻接点v6,因为visited[6]的值为0,访问v6,如下图:
15.将visited[6]值为1,并将v6入队。
16.v4的全部邻接点均已被访问完毕,将队头元素v5出队,开始访问v5的所有邻接点。
开始访问v5邻接点v3,因为visited[3]的值为1,不进行访问。
继续访问v5邻接点v6,因为visited[6]的值为1,不进行访问。
17.v5的全部邻接点均已被访问完毕,将队头元素v6出队,开始访问v6的所有邻接点。
开始访问v6邻接点v4,因为visited[4]的值为1,不进行访问。
继续访问v6邻接点v5,因为visited[5]的值文1,不进行访问。
18.队列为空,退出循环,全部顶点均访问完毕。
题目:785判断二分图
给定一个无向图graph
,当这个图为二分图时返回true
。
如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我们就将这个图称为二分图。
graph
将会以邻接表方式给出,graph[i]
表示图中与节点i
相连的所有节点。每个节点都是一个在0
到graph.length-1
之间的整数。这图中没有自环和平行边: graph[i]
中不存在i
,并且graph[i]
中没有重复的值。
示例 1:
输入: [[1,3], [0,2], [1,3], [0,2]]
输出: true
解释:
无向图如下:
0----1
| |
| |
3----2
我们可以将节点分成两组: {0, 2} 和 {1, 3}。
示例 2:
输入: [[1,2,3], [0,2], [0,1,3], [0,2]]
输出: false
解释:
无向图如下:
0----1
| \ |
| \ |
3----2
我们不能将节点分割成两个独立的子集。
注意:
graph
的长度范围为[1, 100]
。graph[i]
中的元素的范围为[0, graph.length - 1]
。graph[i]
不会包含i
或者有重复的值。- 图是无向的: 如果
j
在graph[i]
里边, 那么i
也会在graph[j]
里边。
思路:
分析: 用染色法,即从其中一个顶点开始,将跟它邻接的点染成与其不同的颜色,如果邻接的点有相同颜色的,则说明不是二分图
代码:
def bfs(s,graph,color,queue):
color[s] = 1
queue.append(s)
while queue:
u = queue.pop()
print(u)
for v in graph[u]:
if color[v] == 0:
queue.append(v)
color[v] = 0 - color[u]
else:
if color[v] == color[u]:
return False
return True def isBipartite(graph):
if not graph:
return False
n = len(graph)
color = [0] * n
queue = []
for i in range(n):
if color[i] == 0 and not bfs(i,graph,color,queue):
return False
return True
graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
isBipartite(graph)
图的BFS的更多相关文章
- 【数据结构与算法】自己动手实现图的BFS和DFS(附完整源码)
转载请注明出处:http://blog.csdn.net/ns_code/article/details/19617187 图的存储结构 本文的重点在于图的深度优先搜索(DFS)和广度优先搜索(BFS ...
- ACM:图的BFS,走迷宫
题目: 一个网格迷宫由n行m列的单元格组成,每一个单元格要么是空地(用1表示),要么是障碍物(用0来表示).你的任务是找一条从起点到终点的最短移动序列,当中UDLR分别表示往上.下.左.右移动到相邻单 ...
- 图之BFS和DFS遍历的实现并解决一次旅游中发现的问题
这篇文章用来复习使用BFS(Breadth First Search)和DFS(Depth First Search) 并解决一个在旅游时遇到的问题. 关于图的邻接表存储与邻接矩阵的存储,各有优缺点. ...
- 1128. Partition into Groups(图着色bfs)
1128 写的dfs貌似不太对 bfs重写 用bfs将图进行黑白染色 如果有超过一个与自己颜色相同的点 就把该点存入栈中 最后处理栈中的点 判断此点是否合法 不合法 取反 取反后再判断相邻点是否合法 ...
- 图的BFS代码
图是严蔚敏书上P168的图, 图的邻接表存储,DFS可以看以前写的文章:http://www.cnblogs.com/youxin/archive/2012/07/28/2613362.html ]; ...
- PAT A1076 Forwards on Weibo (30 分)——图的bfs
Weibo is known as the Chinese version of Twitter. One user on Weibo may have many followers, and may ...
- PAT A1021 Deepest Root (25 分)——图的BFS,DFS
A graph which is connected and acyclic can be considered a tree. The hight of the tree depends on th ...
- UVA-10047 The Monocycle (图的BFS遍历)
题目大意:一张图,问从起点到终点的最短时间是多少.方向转动也消耗时间. 题目分析:图的广度优先遍历... 代码如下: # include<iostream> # include<cs ...
- CodeForces 131D【图特性+BFS】
题意: 只有一个环,然后环都是0(环缩点相当于树的根),然后其余的输出到根的距离 思路: 可以从度为1的 开始搜 把那些分支全标记掉,然后再取没有标记掉的,BFS一下搞出距离. 具体这个标记: 倒着搜 ...
- 算法学习记录-图(DFS BFS)
图: 目录: 1.概念 2.邻接矩阵(结构,深度/广度优先遍历) 3.邻接表(结构,深度/广度优先遍历) 图的基本概念: 数据元素:顶点 1.有穷非空(必须有顶点) 2.顶点之间为边(可空) 无向图: ...
随机推荐
- SSM(spring mvc+spring+mybatis)学习路径——2-2、spring MVC拦截器
目录 2-2 Spring MVC拦截器 第一章 概述 第二章 Spring mvc拦截器的实现 2-1 拦截器的工作原理 2-2 拦截器的实现 2-3 拦截器的方法介绍 2-4 多个拦截器应用 2- ...
- N天学习一个linux命令之sort
用途 对文本内容按行排序,输出排好序后的内容到标准输出流 用法 sort [OPTION]... [FILE]... sort [OPTION]... --files0-from=F 常用选项 -b, ...
- luogu3084 Photo 单调队列优化DP
题目大意 农夫约翰决定给站在一条线上的N(1 <= N <= 200,000)头奶牛制作一张全家福照片,N头奶牛编号1到N.于是约翰拍摄了M(1 <= M <= 100,000 ...
- 【HNOI 2004】 L语言
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1212 [算法] 字典树 + dp [代码] #include<bits/std ...
- iOS社会化分享(干货)
一.苹果原生集成的社会化分享 1.哪些平台 (1)Twitter (2)FaceBook (3)Flickr (4)Vimeo (5)新浪微博 :iOS6 (6)腾讯微博 : iOS7 2.框架 : ...
- (Go)09.指针赋值修改示例
答案: 1 package main 2 import ( 3 "fmt" 4 ) 5 6 7 func modify(p *int) { 8 fmt.Println(p) 9 ...
- Python 43 视图 、sql注入问题 、事务 、存储过程
一:视图 1 视图是什么? 本质是一张虚拟的表,他的数据来自select语句 创建视图 create view test_view select *from t1; 2 有什么用? 原表安全 案例: ...
- HTML多媒体标记之字幕标记
在HTML中,可以向页面中插入字幕,水平或垂直滚动显示文字信息,字幕标记的格式如下: <marquee 属性="值"...>滚动的文字信息</marquee> ...
- thinkphp3.2 验证码生成和点击刷新验证码
生成验证码的时候: public function verify_c(){ $Verify = new \Think\Verify(); $Verify->fontSize = 18; $Ver ...
- centos7安装python3.7和ipython
一.centos7为刚安装的 1)配置yum源和epel源 采用国内源 查看yum的配置文件 (里面的镜像网址)是否ping的通 全部更改成 国内的 yum .epel源 在图中位置 下载相应的 re ...