from numpy import array
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark import SparkContext
from pyspark.mllib.evaluation import BinaryClassificationMetrics sc = SparkContext(appName="PythonDecisionTreeClassificationExample")
data = [
LabeledPoint(0.0, [0.0]),
LabeledPoint(1.0, [1.0]),
LabeledPoint(0.0, [-2.0]),
LabeledPoint(0.0, [-1.0]),
LabeledPoint(0.0, [-3.0]),
LabeledPoint(1.0, [4.0]),
LabeledPoint(1.0, [4.5]),
LabeledPoint(1.0, [4.9]),
LabeledPoint(1.0, [3.0])
]
all_data = sc.parallelize(data)
(trainingData, testData) = all_data.randomSplit([0.8, 0.2]) # model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {})
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
impurity='gini', maxDepth=5, maxBins=32)
print(model)
print(model.toDebugString())
model.predict(array([1.0]))
model.predict(array([0.0]))
rdd = sc.parallelize([[1.0], [0.0]])
model.predict(rdd).collect() predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)

predictionsAndLabels = predictions.zip(testData.map(lambda lp: lp.label))

metrics = BinaryClassificationMetrics(predictionsAndLabels )
print "AUC=%f PR=%f" % (metrics.areaUnderROC, metrics.areaUnderPR) testErr = labelsAndPredictions.filter(lambda (v, p): v != p).count() / float(testData.count())
print('Test Error = ' + str(testErr))
print('Learned classification tree model:')
print(model.toDebugString()) # Save and load model
model.save(sc, "./myDecisionTreeClassificationModel")
sameModel = DecisionTreeModel.load(sc, "./myDecisionTreeClassificationModel")

我的spark python 决策树实例的更多相关文章

  1. 梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)

    梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details ...

  2. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  3. python基础——实例属性和类属性

    python基础——实例属性和类属性 由于Python是动态语言,根据类创建的实例可以任意绑定属性. 给实例绑定属性的方法是通过实例变量,或者通过self变量: class Student(objec ...

  4. python 发送邮件实例

    留言板回复作者邮件提醒 -----------2016-5-11 15:03:58-- source:python发送邮件实例

  5. python Cmd实例之网络爬虫应用

    python Cmd实例之网络爬虫应用 标签(空格分隔): python Cmd 爬虫 废话少说,直接上代码 # encoding=utf-8 import os import multiproces ...

  6. Pandas基础学习与Spark Python初探

    摘要:pandas是一个强大的Python数据分析工具包,pandas的两个主要数据结构Series(一维)和DataFrame(二维)处理了金融,统计,社会中的绝大多数典型用例科学,以及许多工程领域 ...

  7. Python爬虫实例:爬取B站《工作细胞》短评——异步加载信息的爬取

    很多网页的信息都是通过异步加载的,本文就举例讨论下此类网页的抓取. <工作细胞>最近比较火,bilibili 上目前的短评已经有17000多条. 先看分析下页面 右边 li 标签中的就是短 ...

  8. Python爬虫实例:爬取猫眼电影——破解字体反爬

    字体反爬 字体反爬也就是自定义字体反爬,通过调用自定义的字体文件来渲染网页中的文字,而网页中的文字不再是文字,而是相应的字体编码,通过复制或者简单的采集是无法采集到编码后的文字内容的. 现在貌似不少网 ...

  9. Python爬虫实例:爬取豆瓣Top250

    入门第一个爬虫一般都是爬这个,实在是太简单.用了 requests 和 bs4 库. 1.检查网页元素,提取所需要的信息并保存.这个用 bs4 就可以,前面的文章中已经有详细的用法阐述. 2.找到下一 ...

随机推荐

  1. nvcc fatal : Unsupported gpu architecture 'compute_11'

    使用VS编译OpenCV编译源代码时候,对Cmake生成的工程文件编译,会出现 nvcc fatal : Unsupported gpu architecture 'compute_11'  问题.原 ...

  2. OpenCV: 图像连通域检测的递归算法

    序言:清除链接边缘,可以使用数组进行递归运算; 连通域检测的递归算法是定义级别的检测算法,且是无优化和无语义失误的. 同样可用于寻找连通域 void ClearEdge(CvMat* MM,CvPoi ...

  3. 【JSP】上传图片到数据库中

    第一步:建立数据库 create table test_img(id number(4),name varchar(20),img long raw); 第二步:(NewImg.html) <h ...

  4. S-HR薪酬项目与核算表的关系

  5. 【剑指Offer】30、连续子数组的最大和

      题目描述:   HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决.但是 ...

  6. [系统资源]port range

    ip_local_port_range 端口范围 sysctl Linux中有限定端口的使用范围,如果我要为我的程序预留某些端口,那么我需要控制这个端口范围, 本文主要描述如何去修改端口范围. /pr ...

  7. [luogu2602 ZJOI2010] 数字计数 (数位dp)

    传送门 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output ...

  8. 洛谷 P2712 摄像头

    题目描述 食品店里有n个摄像头,这种摄像头很笨拙,只能拍摄到固定位置.现有一群胆大妄为的松鼠想要抢劫食品店,为了不让摄像头拍下他们犯罪的证据,他们抢劫前的第一件事就是砸毁这些摄像头. 为了便于砸毁摄像 ...

  9. 【高级算法】禁忌搜索算法解决3SAT问题(C++实现)

    转载请注明出处:http://blog.csdn.net/zhoubin1992/article/details/46440389 近期梳理,翻出了当年高级算法课程做的题目.禁忌搜索算法解决3SAT问 ...

  10. Android中加入水平线和垂直线

    1.加入水平线 <View android:layout_height="0.5dip" android:background="#686868" and ...