http://www.lydsy.com/JudgeOnline/problem.php?id=1776||http://cogs.pro/cogs/problem/problem.php?pid=803

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 507  Solved: 246
[Submit][Status][Discuss]

Description

农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N。恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地。而且从每片草地出发都可以抵达其他所有草地。也就是说,这些草地和道路构成了一种叫做树的图。输入包含一个详细的草地的集合,详细说明了每个草地的父节点P_i (0 <= P_i <= N)。根节点的P_i == 0, 表示它没有父节点。因为奶牛建立了1到K一共K (1 <= K <= N/2)个政党。每只奶牛都要加入某一个政党,其中, 第i只奶牛属于第A_i (1 <= A_i <= K)个政党。而且每个政党至少有两只奶牛。 这些政党互相吵闹争。每个政党都想知道自己的“范围”有多大。其中,定义一个政党的范围是这个政党离得最远的两只奶牛(沿着双向道路行走)的距离。 比如说,记为政党1包含奶牛1,3和6,政党2包含奶牛2,4和5。这些草地的连接方式如下图所 示(政党1由-n-表示):  政党1最大的两只奶牛的距离是3(也就是奶牛3和奶牛6的距离)。政党2最大的两只奶牛的距离是2(也就是奶牛2和4,4和5,还有5和2之间的距离)。 帮助奶牛们求出每个政党的范围。

Input

* 第一行: 两个由空格隔开的整数: N 和 K * 第2到第N+1行: 第i+1行包含两个由空格隔开的整数: A_i和P_i

Output

* 第1到第K行: 第i行包含一个单独的整数,表示第i个政党的范围。

Sample Input

6 2
1 3
2 1
1 0
2 1
2 1
1 5

Sample Output

3
2

HINT

 

Source

Gold

距离最远的两个点之中,一定有一个是在当前政党中深度最深的,枚举另一个点,更新政党范围

mdzz我居然用点编号和深度去比较!!

 #include <cstdio>

 const int N(2e5+);
int a[N],p[N],deps[N],ans[N];
int head[N],sumedge;
struct Edge
{
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[N<<];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v]);
head[v]=sumedge;
} #define max(a,b) (a>b?a:b)
#define swap(a,b) {int tmp=a;a=b,b=tmp;}
int dad[N],dep[N],size[N],son[N],top[N];
void DFS(int u)
{
size[u]=;
dep[u]=dep[dad[u]]+;
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(dad[u]==v) continue;
dad[v]=u; DFS(v); size[u]+=size[v];
if(size[son[u]]<size[v]) son[u]=v;
}
}
void DFS_(int u,int Top)
{
top[u]=Top;
if(son[u]) DFS_(son[u],Top);
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(dad[u]!=v&&son[u]!=v) DFS_(v,v);
}
}
int LCA(int x,int y)
{
for(;top[x]!=top[y];y=dad[top[y]])
if(dep[top[x]]>dep[top[y]]) swap(x,y);
return dep[x]<dep[y]?x:y;
} inline void read(int &x)
{
x=; register char ch=getchar();
for(;ch>''||ch<'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
}
inline void write(int x)
{
if(x/) write(x/);
putchar(x%+'');
}
int AC()
{
// freopen("cowpol.in","r",stdin);
// freopen("cowpol.out","w",stdout); int n,k,rt; read(n),read(k);
for(int i=;i<=n;i++)
{
read(a[i]),read(p[i]);
if(!p[i]) rt=i;
else ins(p[i],i);
}
DFS(rt); DFS_(rt,rt);
for(int i=;i<=n;i++)
if(dep[i]>dep[deps[a[i]]]) deps[a[i]]=i;
for(int lca,i=;i<=n;i++)
{
lca=LCA(i,deps[a[i]]);
ans[a[i]]=max(ans[a[i]],dep[i]+dep[deps[a[i]]]-dep[lca]*);
}
for(int i=;i<=k;i++)
write(ans[i]),puts("");
return ;
} int I_want_AC=AC();
int main(){;}

COGS——T 803. [USACO Hol10] 政党 || 1776: [Usaco2010 Hol]cowpol 奶牛政坛的更多相关文章

  1. bzoj:1776: [Usaco2010 Hol]cowpol 奶牛政坛

    Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片 ...

  2. bzoj 1776: [Usaco2010 Hol]cowpol 奶牛政坛——树的直径

    农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片草地出发都可以抵达其他所 ...

  3. 【BZOJ】1776: [Usaco2010 Hol]cowpol 奶牛政坛

    [题意]给定n个点的树,每个点属于一个分类,求每个分类中(至少有2个点)最远的两点距离.n<=200000 [算法]LCA [题解]结论:树上任意点集中最远的两点一定包含点集中深度最大的点(求树 ...

  4. BZOJ 1776: [Usaco2010 Hol]cowpol 奶牛政坛 LCA + 树的直径

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  5. 【BZOJ1776】[Usaco2010 Hol]cowpol 奶牛政坛 树的直径

    [BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛 Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N. ...

  6. [bzoj1776][Usaco2010 Hol]cowpol 奶牛政坛_倍增lca

    [Usaco2010 Hol]cowpol 奶牛政坛 题目大意: 数据范围:如题面. 题解: 第一想法是一个复杂度踩标程的算法..... 就是每种政党建一棵虚树,然后对于每棵虚树都暴力求直径就好了,复 ...

  7. [BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛

    Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片 ...

  8. [Usaco2010 Hol]cowpol 奶牛政坛

    题目描述: 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片草地出发都可 ...

  9. bzoj [Usaco2010 Hol]cowpol 奶牛政坛【树链剖分】

    意识流虚树 首先考虑只有一个党派,那么可以O(n)求树的直径,步骤是随便指定一个根然后找距离根最远点,然后再找距离这个最远点最远的点,那么最远点和距离这个最远点最远的点之间的距离就是直径 那么考虑多党 ...

随机推荐

  1. .Net调用Java编写的WebServices返回值为Null的解决方法(SoapUI工具测试有返回值)

    最近在项目中与别的公司对接业务,对方是Java语言,需要调用对方的WebServices,结果常规的添加web引用的方法可以传过去值,但是返回值为null 查了很多资料,没有解决方法 思考应该是.Ne ...

  2. BZOJ 2314 士兵的放置(支配集)

    显然是\(DP\). 设\(dp[i][0/1/2]\)代表以i为根且\(i上有士兵放置/i被控制但i上没有士兵/i没有被控制\)的最小代价. \(g[i][0/1/2]\)代表对应的方案数. 然后运 ...

  3. 中国剩余定理(excrt) 模板

    excrt板子题 #include <cmath> #include <cstdio> #include <cstring> #include <algori ...

  4. [JZOJ]100047. 【NOIP2017提高A组模拟7.14】基因变异

    21 世纪是生物学的世纪,以遗传与进化为代表的现代生物理论越来越多的 进入了我们的视野. 如同大家所熟知的,基因是遗传因子,它记录了生命的基本构造和性能. 因此生物进化与基因的变异息息相关,考察基因变 ...

  5. [读书笔记] Python数据分析 (一) 准备工作

    1. python中数据结构:矩阵,数组,数据框,通过关键列相互联系的多个表(SQL主键,外键),时间序列 2. python 解释型语言,程序员时间和CPU时间衡量,高频交易系统 3. 全局解释器锁 ...

  6. python的基础及练习

    1.变量变是指变化,量是指反映某种状态例:level =1 或 2 username = ‘xuanxuan’password = ‘123’python里的“=”是赋值的意思,并不是真的等于 变量有 ...

  7. 【转】python 关键字

    转自:http://www.cnblogs.com/hongten/p/hongten_python_keywords.html python3.3.2中的关键字如下: The following i ...

  8. Mysql学习总结(34)——Mysql 彻底解决中文乱码的问题

    mysql 中常常出现对中文支持不友好的情况 常见的错误 "Illegal mix of collations for operation" 下面我们规整一下 mysql 数据库中 ...

  9. 【LeetCode-面试算法经典-Java实现】【168-Excel Sheet Column Title(Excell列标题)】

    [168-Excel Sheet Column Title(Excell列标题)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a positive in ...

  10. pjlib深入剖析和使用详解

    1. PJSIP简介 PJSIP的实现是为了能在嵌入式设备上高效实现SIP/VOIP.其主要特征包括:    1).极具移植性.(Extremely portable)                 ...