http://www.lydsy.com/JudgeOnline/problem.php?id=1776||http://cogs.pro/cogs/problem/problem.php?pid=803

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 507  Solved: 246
[Submit][Status][Discuss]

Description

农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N。恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地。而且从每片草地出发都可以抵达其他所有草地。也就是说,这些草地和道路构成了一种叫做树的图。输入包含一个详细的草地的集合,详细说明了每个草地的父节点P_i (0 <= P_i <= N)。根节点的P_i == 0, 表示它没有父节点。因为奶牛建立了1到K一共K (1 <= K <= N/2)个政党。每只奶牛都要加入某一个政党,其中, 第i只奶牛属于第A_i (1 <= A_i <= K)个政党。而且每个政党至少有两只奶牛。 这些政党互相吵闹争。每个政党都想知道自己的“范围”有多大。其中,定义一个政党的范围是这个政党离得最远的两只奶牛(沿着双向道路行走)的距离。 比如说,记为政党1包含奶牛1,3和6,政党2包含奶牛2,4和5。这些草地的连接方式如下图所 示(政党1由-n-表示):  政党1最大的两只奶牛的距离是3(也就是奶牛3和奶牛6的距离)。政党2最大的两只奶牛的距离是2(也就是奶牛2和4,4和5,还有5和2之间的距离)。 帮助奶牛们求出每个政党的范围。

Input

* 第一行: 两个由空格隔开的整数: N 和 K * 第2到第N+1行: 第i+1行包含两个由空格隔开的整数: A_i和P_i

Output

* 第1到第K行: 第i行包含一个单独的整数,表示第i个政党的范围。

Sample Input

6 2
1 3
2 1
1 0
2 1
2 1
1 5

Sample Output

3
2

HINT

 

Source

Gold

距离最远的两个点之中,一定有一个是在当前政党中深度最深的,枚举另一个点,更新政党范围

mdzz我居然用点编号和深度去比较!!

 #include <cstdio>

 const int N(2e5+);
int a[N],p[N],deps[N],ans[N];
int head[N],sumedge;
struct Edge
{
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[N<<];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v]);
head[v]=sumedge;
} #define max(a,b) (a>b?a:b)
#define swap(a,b) {int tmp=a;a=b,b=tmp;}
int dad[N],dep[N],size[N],son[N],top[N];
void DFS(int u)
{
size[u]=;
dep[u]=dep[dad[u]]+;
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(dad[u]==v) continue;
dad[v]=u; DFS(v); size[u]+=size[v];
if(size[son[u]]<size[v]) son[u]=v;
}
}
void DFS_(int u,int Top)
{
top[u]=Top;
if(son[u]) DFS_(son[u],Top);
for(int v,i=head[u];i;i=edge[i].next)
{
v=edge[i].v;
if(dad[u]!=v&&son[u]!=v) DFS_(v,v);
}
}
int LCA(int x,int y)
{
for(;top[x]!=top[y];y=dad[top[y]])
if(dep[top[x]]>dep[top[y]]) swap(x,y);
return dep[x]<dep[y]?x:y;
} inline void read(int &x)
{
x=; register char ch=getchar();
for(;ch>''||ch<'';) ch=getchar();
for(;ch>=''&&ch<='';ch=getchar()) x=x*+ch-'';
}
inline void write(int x)
{
if(x/) write(x/);
putchar(x%+'');
}
int AC()
{
// freopen("cowpol.in","r",stdin);
// freopen("cowpol.out","w",stdout); int n,k,rt; read(n),read(k);
for(int i=;i<=n;i++)
{
read(a[i]),read(p[i]);
if(!p[i]) rt=i;
else ins(p[i],i);
}
DFS(rt); DFS_(rt,rt);
for(int i=;i<=n;i++)
if(dep[i]>dep[deps[a[i]]]) deps[a[i]]=i;
for(int lca,i=;i<=n;i++)
{
lca=LCA(i,deps[a[i]]);
ans[a[i]]=max(ans[a[i]],dep[i]+dep[deps[a[i]]]-dep[lca]*);
}
for(int i=;i<=k;i++)
write(ans[i]),puts("");
return ;
} int I_want_AC=AC();
int main(){;}

COGS——T 803. [USACO Hol10] 政党 || 1776: [Usaco2010 Hol]cowpol 奶牛政坛的更多相关文章

  1. bzoj:1776: [Usaco2010 Hol]cowpol 奶牛政坛

    Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片 ...

  2. bzoj 1776: [Usaco2010 Hol]cowpol 奶牛政坛——树的直径

    农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片草地出发都可以抵达其他所 ...

  3. 【BZOJ】1776: [Usaco2010 Hol]cowpol 奶牛政坛

    [题意]给定n个点的树,每个点属于一个分类,求每个分类中(至少有2个点)最远的两点距离.n<=200000 [算法]LCA [题解]结论:树上任意点集中最远的两点一定包含点集中深度最大的点(求树 ...

  4. BZOJ 1776: [Usaco2010 Hol]cowpol 奶牛政坛 LCA + 树的直径

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  5. 【BZOJ1776】[Usaco2010 Hol]cowpol 奶牛政坛 树的直径

    [BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛 Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N. ...

  6. [bzoj1776][Usaco2010 Hol]cowpol 奶牛政坛_倍增lca

    [Usaco2010 Hol]cowpol 奶牛政坛 题目大意: 数据范围:如题面. 题解: 第一想法是一个复杂度踩标程的算法..... 就是每种政党建一棵虚树,然后对于每棵虚树都暴力求直径就好了,复 ...

  7. [BZOJ1776][Usaco2010 Hol]cowpol 奶牛政坛

    Description 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片 ...

  8. [Usaco2010 Hol]cowpol 奶牛政坛

    题目描述: 农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N.恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地.而且从每片草地出发都可 ...

  9. bzoj [Usaco2010 Hol]cowpol 奶牛政坛【树链剖分】

    意识流虚树 首先考虑只有一个党派,那么可以O(n)求树的直径,步骤是随便指定一个根然后找距离根最远点,然后再找距离这个最远点最远的点,那么最远点和距离这个最远点最远的点之间的距离就是直径 那么考虑多党 ...

随机推荐

  1. BZOJ 3672 [NOI2014]购票 (凸优化+树剖/树分治)

    题目大意: 略 题面传送门 怎么看也是一道$duliu$题= = 先推式子,设$dp[x]$表示到达$x$点到达1节点的最小花费 设$y$是$x$的一个祖先,则$dp[x]=min(dp[y]+(di ...

  2. 中国剩余定理(excrt) 模板

    excrt板子题 #include <cmath> #include <cstdio> #include <cstring> #include <algori ...

  3. 在centos里安装Nginx

    (1)下载Nginx的RPM包 wget http://nginx.org/packages/centos/6/noarch/RPMS/nginx-release-centos-6-0.el6.ngx ...

  4. webpack配置相关的页面异常

    原文:https://www.cnblogs.com/Hsong/p/9023341.html 前言 在团队协作开发中,为了统一代码风格,避免一些低级错误,应该设有团队成员统一遵守的编码规范.很多语言 ...

  5. Vue基础知识点

    基础知识: vue的生命周期: beforeCreate/created.beforeMount/mounted.beforeUpdate/updated.beforeDestory/destorye ...

  6. 4.AND,OR

    4.WHERE中使用AND,OR连接多个过滤条件      AND:并且的关系,要求条件同时满足    OR:或者的关系,要求条件满足某一个就可以     //查询10部门,基本工资大于2000的员工 ...

  7. Docker可视化管理工具对比(DockerUI、Shipyard、Rancher、Portainer)

    1.前言 谈及docker,避免不了需要熟练的记住好多命令及其用法,对于熟悉shell.技术开发人员而言,还是可以接受的,熟练之后,命令行毕竟是很方便的,便于操作及脚本化.但对于命令行过敏.非技术人员 ...

  8. c3p0在spring中的配置

    在大家的开发和学习其中应该经经常使用到数据库的连接和使用,只是连接 的方式就有非常多种方式了,例如说用最最简单的JDBC 也好,还实用比 较复杂一点的就是数据库连接池.当然还有使用DBCP的连接的,各 ...

  9. 百度地图-----&gt;地图类型、定位模式、实时交通、我的位置、加入覆盖物、覆盖物详情及提示

    在百度地图开发平台 http://developer.baidu.com/map/index.php? title=androidsdk 进行创建应用,获取应用的AK,在进行下载BaiduLBS_An ...

  10. bzoj5204: [CodePlus 2018 3 月赛]投票统计(离散化+暴力)

    5204: [CodePlus 2018 3 月赛]投票统计 题目:传送门 题解: 谢谢niang老师的一道sui题 离散化之后直接搞啊(打完之后还错了...) 代码: #include<cst ...