文章来源:http://blog.csdn.net/xizhibei

=============================

PCA,也就是说,PrincipalComponents Analysis,主成份分析,是个非常优秀的算法。依照书上的说法:

寻找最小均方意义下,最能代表原始数据的投影方法

然后自己的说法就是:主要用于特征的降维

另外。这个算法也有一个经典的应用:人脸识别。这里略微扯一下,无非是把处理好的人脸图片的每一行凑一起作为特征向量。然后用PAC算法降维搞定之。

PCA的主要思想是寻找到数据的主轴方向,由主轴构成一个新的坐标系。这里的维数能够比原维数低,然后数据由原坐标系向新的坐标系投影,这个投影的过程就能够是降维的过程。

推导过程神马的就不扯了。推荐一个课件:http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf,讲得挺具体的

然后说下算法的步骤

1.计算全部样本的均值m和散布矩阵S。所谓散布矩阵同协方差矩阵;
2.计算S的特征值,然后由大到小排序;
3.选择前n'个特征值相应的特征矢量作成一个变换矩阵E=[e1, e2, …, en’]。
4.最后。对于之前每个n维的特征矢量x能够转换为n’维的新特征矢量y:

y = transpose(E)(x-m)

最后还得亲自做下才干记得住:用Python的numpy做的。用C做的话那就是没事找事。太费事了。由于对numpy不熟。以下可能有错误,望各位大大指正

mat = np.load("data.npy")#每一行一个类别数字标记与一个特征向量
data = np.matrix(mat[:,1:])
avg = np.average(data,0)
means = data - avg tmp = np.transpose(means) * means / N #N为特征数量
D,V = np.linalg.eig(tmp)#DV分别相应特征值与特征向量组成的向量,须要注意下的是,结果是自己主动排好序的,再次膜拜numpy OTL
#print V
#print D
E = V[0:100,:]#这里仅仅是简单取前100维数据,实际情况能够考虑取前80%之类的
y = np.matrix(E) * np.transpose(means)#得到降维后的特征向量 np.save("final",y)

另外,须要提一下的是OpenCV(无所不能的OpenCV啊OTL)中有PCA的实现:

void cvCalcPCA( const CvArr* data,//输入数据
CvArr* avg, //平均(输出)
CvArr* eigenvalues, //特征值(输出)
CvArr* eigenvectors, //特征向量(输出)
int flags );//输入数据中的特征向量是怎么放的,比方CV_PCA_DATA_AS_ROW

最后。说下PCA的缺点:PCA将全部的样本(特征向量集合)作为一个总体对待,去寻找一个均方误差最小意义下的最优线性映射投影,而忽略了类别属性,而它所忽略的投影方向有可能刚好包括了重要的可分性信息

嗯,最后的最后——好了,没了,的确是最后了

强烈推荐:一篇能把PAC说得非常透彻的文章《特征向量物理意义》:http://blog.sina.com.cn/s/blog_49a1f42e0100fvdu.html

大约PCA算法学习总结的更多相关文章

  1. PCA算法学习(Matlab实现)

    PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩 ...

  2. 【转】PCA算法学习_1(OpenCV中PCA实现人脸降维)

    前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的.本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类. ...

  3. OpenCV学习(35) OpenCV中的PCA算法

    PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html     对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = ...

  4. 主成分分析(PCA)学习笔记

    这两天学习了吴恩达老师机器学习中的主成分分析法(Principal Component Analysis, PCA),PCA是一种常用的降维方法.这里对PCA算法做一个小笔记,并利用python完成对 ...

  5. PCA算法 | 数据集特征数量太多怎么办?用这个算法对它降维打击!

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第27文章,我们一起来聊聊数据处理领域的降维(dimensionality reduction)算法. 我们都知道,图片 ...

  6. PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?

    PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) ...

  7. DSP算法学习-过采样技术

    DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207 ...

  8. 算法学习之C语言基础

    算法学习,先熟悉一下C语言哈!!! #include <conio.h> #include<stdio.h> int main(){ printf(+); getch(); ; ...

  9. Python之路,Day21 - 常用算法学习

    Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...

随机推荐

  1. Emmet超详细教程

    Emmet超详细教程 一.总结 一句话总结:用的时候照着用,能提高效率. 1.快捷键如何使用? 需要敲代码的时候把快捷键放到旁边即可.照着敲. 二.Emmet超详细教程 Emmet的前身是大名鼎鼎的Z ...

  2. 【27.77%】【BZOJ 4066】简单题

    Time Limit: 50 Sec  Memory Limit: 20 MB Submit: 1919  Solved: 533 [Submit][Status][Discuss] Descript ...

  3. 阿里巴巴fastjson的使用

    一.项目结构 一个学生类.当中学生类中能够包括Course类对象 使用Maven管理项目的能够加入fastjson的坐标: <dependency> <groupId>com. ...

  4. [Javascript] Javascript 'in' opreator

    If you want to check whether a key is inside an Object or Array, you can use 'in': Object: const obj ...

  5. 使用Fernflower 比较准确的反编译整个java项目

    以前一直使用jd-gui.exe  ,都说是最好用的,但是编译总是有问题,还得修改,使用idea 后,感觉反编译的相当好,看注释是 Fernflower,然后参考 http://the.bytecod ...

  6. 阿里云centos 6.5 32位安装可视化界面的方法

    http://www.dzbfsj.com/forum.php?mod=viewthread&tid=2702 http://www.mayanpeng.cn/?p=507 http://bl ...

  7. arm-linux内存管理学习笔记(1)-内存页表的硬件原理

    linux kernel集中了世界顶尖程序猿们的编程智慧,犹记操作系统课上老师讲操作系统的四大功能:进程调度 内存管理 设备驱动 网络.从事嵌入式软件开发工作,对设备驱动和网络接触的比較多. 而进程调 ...

  8. js 进阶 10 js选择器大全

    js 进阶 10 js选择器大全 一.总结 一句话总结:和css选择器很像 二.JQuery选择器 原生javaScript中,只能使用getELementById().getElementByNam ...

  9. 真机测试时出现 could not find developer disk image问题

    解决Xcode在ipad/iphone 系统真机测试时出现could not find developer disk image问题 原因:手机系统版本比xcode版本高,sdk不支持 方法:更新Xc ...

  10. Redis的常识

    https://github.com/springside/springside4/wiki/redis 1. Overview 1.1 资料 <The Little Redis Book> ...