一、概论

对于给定的n维(两种类型)数据(训练集),找出一个n-1维的面,能够“尽可能”地按照数据类型分开。通过这个面,我们可以通过这个面对测试数据进行预测。

例如对于二维数据,要找一条直线,把这些数据按照不同类型分开。我们要通过PLA算法,找到这条直线,然后通过判断预测数据与这条直线的位置关系,划分测试数据类型。如下图:



二、PLA的原理

先初始化一条直线,然后通过多次迭代,修改这条直线,通过多次迭代,这条直线会收敛于接近最佳分类直线。

修改直线的标准是,任意找出一个点(训练数据中的某个点),判断这个点按照这条直线的划分类型是否跟该点实际类型是否相同。如果相同则开始下次迭代;如果判断错误,则更新直线的参数。

三、W的更新步骤



期中W为直线的参数矩阵。y为该点的实际类型,x为该点的参数矩阵。

假设有一下测试数据:



第1、2个位向量参数,第三个为截距值。

这几个测试数据集的类型表现为:



求出以下的测试集的类型:



假设W的初始化值为:

第一次选择E点来更新W的值:



其中sign的符号函数,sign(x)当x的值大于0是sign(x)=+1,否则为-1。(这里+1,-1分别表示两种标签类型)

如上面公式求出来的结果是+1类型,而真实值为预测值跟真实值不一样,所以需要更新W的值:

四、python实现

1、初始化W的值和迭代次数:

ITERATION = 70;
W = [1, 1, 1];

2、读取训练、测试数据,生成训练、测试(二维)列表:

def createData():
lines_set = open('../data/PLA/Dataset_PLA.txt').readlines();
linesTrain = lines_set[1:7]; #测试数据
linesTest = lines_set[9:13]; #训练数据 trainDataList = processData(linesTrain); #生成训练集(二维列表)
testDataList = processData(linesTest); #生成测试集(二维列表)
return trainDataList, testDataList; def processData(lines): #按行处理从txt中读到的训练集(测试集)数据
dataList = [];
for line in lines: #逐行读取txt文档里的训练集
dataLine = line.strip().split(); #按空格切割一行训练数据(字符串)
dataLine = [int(data) for data in dataLine]; #字符串转int
dataList.append(dataLine); #添加到训练数据列表
return dataList;

3、两个矩阵相乘的结果求符号函数值:

def sign(W, dataList):      #符号函数
sum = 0;
for i in range(len(W)):
sum += W[i] * dataList[i];
if sum > 0: return 1;
else: return -1;

如果各项相乘的和比0大则返回+1,否则返回-1;

4、检测测试的类型是否跟真实标签类型一样

def renewW(W, trainData):   #更新W
signResult = sign(W, trainData);
if signResult == trainData[-1]: return W;
for k in range(len(W)):
W[k] = W[k] + trainData[-1]*trainData[k];
return W;

如果相等,则不更新W的值,否则按公式 W[k] = W[k] + trainData[-1]*trainData[k];更新W的值,返回W的新值。

5、通过多次迭代,训练W的值

def trainW(W, trainDatas):  #训练W
newW = [];
for num in range(ITERATION):
index = num % len(trainDatas);
newW = renewW(W, trainDatas[index]);
return newW;

经过多次迭代后,W的值会收敛于某个值。

6、使用训练后的W对测试集进行分类(预测)

def predictTestData(W, trainDatas, testDatas):  #预测测试数据集
W = trainW(W, trainDatas);
print W;
for i in range(len(testDatas)):
result = sign(W, testDatas[i]);
print result;

五、完整代码

ITERATION = 70;
W = [1, 1, 1]; def createData():
lines_set = open('../data/PLA/Dataset_PLA.txt').readlines();
linesTrain = lines_set[1:7]; #测试数据
linesTest = lines_set[9:13]; #训练数据 trainDataList = processData(linesTrain); #生成训练集(二维列表)
testDataList = processData(linesTest); #生成测试集(二维列表)
return trainDataList, testDataList; def processData(lines): #按行处理从txt中读到的训练集(测试集)数据
dataList = [];
for line in lines: #逐行读取txt文档里的训练集
dataLine = line.strip().split(); #按空格切割一行训练数据(字符串)
dataLine = [int(data) for data in dataLine]; #字符串转int
dataList.append(dataLine); #添加到训练数据列表
return dataList; def sign(W, dataList): #符号函数
sum = 0;
for i in range(len(W)):
sum += W[i] * dataList[i];
if sum > 0: return 1;
else: return -1; def renewW(W, trainData): #更新W
signResult = sign(W, trainData);
if signResult == trainData[-1]: return W;
for k in range(len(W)):
W[k] = W[k] + trainData[-1]*trainData[k];
return W; def trainW(W, trainDatas): #训练W
newW = [];
for num in range(ITERATION):
index = num % len(trainDatas);
newW = renewW(W, trainDatas[index]);
return newW; def predictTestData(W, trainDatas, testDatas): #预测测试数据集
W = trainW(W, trainDatas);
print W;
for i in range(len(testDatas)):
result = sign(W, testDatas[i]);
print result; trainDatas, testDatas = createData(); predictTestData(W, trainDatas, testDatas);

六、数据集



第一列为向量的第一个参数,第二列为第二个参数,第三列为截距值,(训练集)第四列为真实标签类型。

Perceptron Learning Algorithm(python实现)的更多相关文章

  1. 【Perceptron Learning Algorithm】林轩田机器学习基石

    直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:fea ...

  2. Perceptron Learning Algorithm (PLA)

    Perceptron - 感知机,是一种二元线性分类器,它通过对特征向量的加权求和,并把这个”和”与事先设定的门槛值(threshold)做比较,高于门槛值的输出1,低于门槛值的输出-1.其中sign ...

  3. 线性模型(1):Perceptron Learning Algorithm (PLA)

    此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一) PLA算法是基本的binary Classification算法. 一个基本的问题是,对于银行,假设我知道 ...

  4. 感知机:Perceptron Learning Algorithm

    感知机是支持向量机SVM和神经网络的基础 f = sign(wx+b) 这样看起来好像是LR是差不多的,LR是用的sigmoid函数,PLA是用的sign符号函数,两者都是线性分类器,主要的差别在于策 ...

  5. Machine and Deep Learning with Python

    Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...

  6. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  7. 【Machine Learning】Python开发工具:Anaconda+Sublime

    Python开发工具:Anaconda+Sublime 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现 ...

  8. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  9. do some projects in macine learning using python

    i want to do some projects in macine learning using python help me in this context I don't know if y ...

随机推荐

  1. JAVA设计模式之【外观模式】

    通过引入一个外观角色来简化客户端与子系统之间的交互. 顾客无需直接和茶叶.茶具.开水等交互,整个泡茶过程由服务员来完成,顾客只需与服务员交互即可. 通过引入一个外观角色可以降低原有系统的复杂度,同时降 ...

  2. apiCloud中Frame框的操作,显示与隐藏Frame

    Frame是一层一层的概念, 有的位于上层,有的位于下层. 1.加载菜单 2.加载页面层 3.首页拆分出内容层,这个时候内容层位于页面层的上方,当点击其他页面的时候,内容层遮挡住了他们 解决方案一 判 ...

  3. event内存泄漏

    C#内存泄漏--event内存泄漏 内存泄漏是指:当一块内存被分配后,被丢弃,没有任何实例指针指向这块内存, 并且这块内存不会被GC视为垃圾进行回收.这块内存会一直存在,直到程序退出.C#是托管型代码 ...

  4. Linux就该这么学 20181005(第九章SSH远程对话)

    参考链接https://www.linuxprobe.com/ nmtui开启网卡设置 ONBOOT=yes systemctl restart network nmcli connection sh ...

  5. Android 国际区号注册手机号编码 以及常用城市列表

    附上 国际区号编码:我是定义到arrays.xml里面了 <?xml version="1.0" encoding="utf-8"?> <re ...

  6. 微信小程序手势滑动卡片案例

    最近工作中有项目要使用微信小程序技术进行开发,其中一项功能困扰了我很久,卡片滑动动效以及手势识别.经过一番研究和参考,现在把成果展示.记录自己踩到的坑,如果大家有需要,也可以帮助到大家. 效果图: 首 ...

  7. 一:1.2【print&input与变量和运算符】

    [路径] 绝对路径:从根目录开始链接的路径  --->cd C:\Windows\Boot\DVD\EFI\en-US 相对路径:不从根目录开始链接的路径 ----> cd Boot\DV ...

  8. javascript位操作符右移>>>的妙用

    var len=arr.length>>>0; 在arr.length为null或undefined的时间,强制转换为0;

  9. ORACLE数据库字符集处理

    简介: ORACLE数据库字符集,即Oracle全球化支持(Globalization Support),或即国家语言支持(NLS)其作用是用本国语言和格式来存储.处理和检索数据.利用全球化支持,OR ...

  10. 今天遇到的一个诡异的core和解决 std::sort

    其实昨天开发pds,就碰到了core,我还以为是内存不够的问题,或者其他问题. 今天把所有代码挪到了as这里,没想到又出core了. 根据直觉,我就觉得可能是std::sort这边的问题. 上网一搜, ...