METHOD #1: No smooth, just scaling.

def pyramid(image, scale=1.5, minSize=(30, 30)):
# yield the original image
yield image # keep looping over the pyramid
while True:
# compute the new dimensions of the image and resize it
w = int(image.shape[1] / scale)
image = imutils.resize(image, width=w) # if the resized image does not meet the supplied minimum
# size, then stop constructing the pyramid
if image.shape[0] < minSize[1] or image.shape[1] < minSize[0]:
break # yield the next image in the pyramid
yield image

METHOD #2: Resizing + Gaussian smoothing.

# import the necessary packages
import helpers
from skimage.transform import pyramid_gaussian
import argparse
import cv2 # construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", '--image', required=True, help="Path to the image")
ap.add_argument("-s", "--scale", type=float, default=1.5, help="scale factor size")
args = vars(ap.parse_args()) # load the image
image = cv2.imread(args["image"]) # METHOD #1: No smooth, just scaling.
# loop over the image pyramid
for (i, resized) in enumerate(helpers.pyramid(image, scale=args["scale"])):
# show the resized image
cv2.imshow("Layer {}".format(i + 1), resized)
cv2.waitKey(0) # close all windows
cv2.destroyAllWindows() # METHOD #2: Resizing + Gaussian smoothing.
for (i, resized) in enumerate(pyramid_gaussian(image, downscale=2)):
# if the image is too small, break from the loop
if resized.shape[0] < 30 or resized.shape[1] < 30:
break # show the resized image
cv2.imshow("Layer {}".format(i + 1), resized)
cv2.waitKey(0) #Run cmd python pyramid.py --image image/cat.jpg --scale 1.5

参考

【1】Image Pyramids with python and OpenCV - PyImageSearch
http://www.pyimagesearch.com/2015/03/16/image-pyramids-with-python-and-opencv/
【2】jrosebr1/imutils: A series of convenience functions to make basic
image processing operations such as translation, rotation, resizing,
skeletonization, and displaying Matplotlib images easier with opencv and
Python.
https://github.com/jrosebr1/imutils
【3】Histogram of Oriented Gradients and Object Detection - PyImageSearch
http://www.pyimagesearch.com/2014/11/10/histogram-oriented-gradients-object-detection/
【4】Module: transform — skimage v0.14dev docs
http://scikit-image.org/docs/dev/api/skimage.transform.html#pyramid-gaussian

上边我们介绍了图片不压缩的情况下,重新resize到不同大小,这样做的目的是为这一节做准备,即利用滑动窗口圈住图片的文字信息内容等,例如车牌的获取。

# import the necessary packages
import helpers
import argparse
import time
import cv2 # load the image and define the window width and height
image = cv2.imread('./image/cat.jpg')
(winW, winH) = (200, 128) # loop over the image pyramid
for resized in helpers.pyramid(image, scale=1.5):
# loop over the sliding window for each layer of the pyramid
for (x, y, window) in helpers.sliding_window(resized, stepSize=32, windowSize=(winW, winH)):
# if the window does not meet our desired window size, ignore it
if window.shape[0] != winH or window.shape[1] != winW:
continue # THIS IS WHERE YOU WOULD PROCESS YOUR WINDOW, SUCH AS APPLYING A
# MACHINE LEARNING CLASSIFIER TO CLASSIFY THE CONTENTS OF THE
# WINDOW # since we do not have a classifier, we'll just draw the window
clone = resized.copy()
cv2.rectangle(clone, (x, y), (x + winW, y + winH), (0, 255, 0), 2)
cv2.imshow("Window", clone)
cv2.waitKey(1)
# time.sleep(0.025)

helpers:

'''
Created on 2017年8月19日 @author: XuTing
'''
# import the necessary packages
import imutils
from skimage.transform import pyramid_gaussian
import cv2 def pyramid(image, scale=1.5, minSize=(30, 30)):
# yield the original image
yield image # keep looping over the pyramid
while True:
# compute the new dimensions of the image and resize it
w = int(image.shape[1] / scale)
image = imutils.resize(image, width=w) # if the resized image does not meet the supplied minimum
# size, then stop constructing the pyramid
if image.shape[0] < minSize[1] or image.shape[1] < minSize[0]:
break # yield the next image in the pyramid
yield image def sliding_window(image, stepSize, windowSize):
# slide a window across the image
for y in range(0, image.shape[0], stepSize):
for x in range(0, image.shape[1], stepSize):
# yield the current window
yield (x, y, image[y:y + windowSize[1], x:x + windowSize[0]]) if __name__ == '__main__':
image = cv2.imread('./image/cat2.jpg')
# METHOD #2: Resizing + Gaussian smoothing.
for (i, resized) in enumerate(pyramid_gaussian(image, downscale=2)):
# if the image is too small, break from the loop
if resized.shape[0] < 30 or resized.shape[1] < 30:
break
# show the resized image
WinName = "Layer {}".format(i + 1)
cv2.imshow(WinName, resized)
cv2.waitKey(10)
resized = resized*255
cv2.imwrite('./'+WinName+'.jpg',resized)

效果







参考

【1】Sliding Windows for Object Detection with Python and OpenCV - PyImageSearch
http://www.pyimagesearch.com/2015/03/23/sliding-windows-for-object-detection-with-python-and-opencv/?replytocom=322532
【2】My imutils package: A series of OpenCV convenience functions - PyImageSearch
http://www.pyimagesearch.com/2015/02/02/just-open-sourced-personal-imutils-package-series-opencv-convenience-functions/
【3】《SVM物体分类和定位检测》 - Hans的成长记录 - CSDN博客
http://blog.csdn.net/renhanchi/article/category/7007663

 

python 图片滑动窗口的更多相关文章

  1. Python之滑动窗口

    需求 对于一个数组array = ["n","v","l","f",...,"y","c& ...

  2. 『Python』图像金字塔、滑动窗口和非极大值抑制实现

    图像金字塔 1.在从cv2.resize中,传入参数时先列后行的 2.使用了python中的生成器,调用时使用for i in pyramid即可 3.scaleFactor是缩放因子,需要保证缩放后 ...

  3. Python实现图片滑动式验证识别

    1 abstract 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类 ...

  4. 【剑指Offer】滑动窗口的最大值 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 暴力求解 单调递减队列 日期 题目地址:https://www ...

  5. leetcode 239. 滑动窗口最大值(python)

    1. 题目描述 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口内的 k 个数字.滑动窗口每次只向右移动一位. 返回滑动窗口中的最大值. 示 ...

  6. 玩转Python图片处理 (OpenCV-Python )

    OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类 ...

  7. TCP 滑动窗口和 拥塞窗口

    转http://coolshell.cn/articles/11609.html 滑动窗口 -- 表征发送端和接收端的接收能力 拥塞窗口-- 表征中间设备的传输能力 TCP滑动窗口 需要说明一下,如果 ...

  8. opencv 模板匹配与滑动窗口(单匹配) (多匹配)

    1单匹配: 测试图片:   code: #include <opencv\cv.h> #include <opencv\highgui.h> #include <open ...

  9. 面试之路(29)-TCP流量控制和拥塞控制-滑动窗口协议详解

    拥塞: 拥塞发生的主要原因在于网络能够提供的资源不足以满足用户的需求,这些资源包括缓存空间.链路带宽容量和中间节点的处理能力.由于互联网的设计机制导致其缺乏"接纳控制"能力,因此在 ...

随机推荐

  1. 利用jquery将页面中所有目标为“#‘的链接改为其他URL

    有一张页面草稿,开始时为了方便,里面差不多所有的<a>都指向了"#".现在要修改为另一个地址,难道要全部修改吗?用jquery 改改就好.代码如下: <scrip ...

  2. ASP.NET MVC 客户端验证失败后表单仍然提交问题

    客户端验证失败后表单仍然提交问题!导致页面刷新,辛辛苦苦输入的内容荡然无存. 多么奇怪的问题.按道理,验证失败,就应该显示各种错误信息,不会提交表单才对.而现在,错误信息正常显示,但页面却刷新了一遍. ...

  3. luogu1373 小a和uim之大逃离

    题目大意 地面上出现了一个n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液.怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束.开始 ...

  4. UVA 10006(素数打表+快速幂)

    当今计算机科学的一个重要的领域就是密码学.有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义. 阿尔瓦罗就是这样的一个人,它正在设计一个为西班牙杂烩菜饭加密的步骤.他在加密算法 ...

  5. operator[] 重载

    #include <iostream>#include <vector>#include <string> class Assoc {    struct Pair ...

  6. Coursera Algorithms week1 算法分析 练习测验: Egg drop 扔鸡蛋问题

    题目原文: Suppose that you have an n-story building (with floors 1 through n) and plenty of eggs. An egg ...

  7. E20170821-mk

    Dimension   n. 尺寸; [复] 面积,范围; [物] 量纲; [数] 次元,度,维;

  8. thinkphp的session用法

    Session方法用于Session 设置.获取.删除和管理操作. Session 用于Session 设置.获取.删除和管理操作 用法 session($name, $value='') 参数 na ...

  9. 原生JS---2

    js中的程序控制语句 常见的程序有三种执行结构: 1. 顺序结构 2. 分支结构 3. 循环结构 顺序结构:程序从第一行开始执行,按顺序执行到最后一行 分支结构:就像一条岔路口,必须选择且只能选择其中 ...

  10. Django day01 web应用程序 , http协议

    一:web应用程序1.什么是web应用程序 是一种可以通过web访问的应用程序,最大的好处就是, 只要有浏览器,用户就能很容易访问到应用程序 2. web应用程序的优缺点 缺点: 应用程序强调了浏览器 ...